login
A298089
Number of nX4 0..1 arrays with every element equal to 1, 2, 4 or 7 king-move adjacent elements, with upper left element zero.
1
2, 13, 19, 30, 53, 92, 149, 250, 426, 809, 1456, 2602, 4606, 8096, 14731, 27112, 49118, 88604, 159685, 288458, 526293, 960108, 1742179, 3159153, 5731030, 10414879, 18970871, 34518779, 62715041, 113954032, 207132787, 376765957, 685570021
OFFSET
1,1
COMMENTS
Column 4 of A298093.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +2*a(n-5) +4*a(n-6) -28*a(n-7) -3*a(n-8) +26*a(n-9) +22*a(n-10) +6*a(n-11) +7*a(n-12) +53*a(n-13) -42*a(n-14) -84*a(n-15) -64*a(n-16) -24*a(n-17) -3*a(n-18) +40*a(n-19) +101*a(n-20) +36*a(n-21) +51*a(n-22) +23*a(n-23) +75*a(n-24) -85*a(n-25) -129*a(n-26) +23*a(n-27) +6*a(n-28) -58*a(n-29) -108*a(n-30) +41*a(n-31) +87*a(n-32) +38*a(n-33) -2*a(n-34) -10*a(n-35) for n>40
EXAMPLE
Some solutions for n=7
..0..0..1..1. .0..1..0..1. .0..0..1..1. .0..0..1..0. .0..0..1..0
..1..1..0..0. .1..0..1..1. .1..0..1..0. .1..1..0..1. .1..1..0..1
..0..0..0..1. .0..1..0..0. .1..1..1..0. .0..0..0..1. .1..0..1..0
..1..1..0..1. .0..1..1..1. .1..1..1..0. .1..0..1..0. .1..1..1..0
..0..0..1..0. .1..0..1..0. .1..0..1..0. .0..1..1..1. .1..1..1..0
..0..1..0..1. .0..0..0..1. .1..1..0..1. .0..1..0..0. .1..0..1..0
..0..0..0..1. .1..1..0..1. .0..0..1..0. .1..0..1..1. .0..0..1..1
CROSSREFS
Cf. A298093.
Sequence in context: A122136 A168672 A297854 * A067208 A142348 A309663
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 12 2018
STATUS
approved