The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A297899 Triangle read by rows, T(n, k) = binomial(n, k)*hypergeom([k-n, n+1], [k+2], -4), for n >= 0 and 0 <= k <= n. 1
1, 5, 1, 45, 10, 1, 505, 115, 15, 1, 6345, 1460, 210, 20, 1, 85405, 19765, 2990, 330, 25, 1, 1204245, 279710, 43635, 5220, 475, 30, 1, 17558705, 4088615, 651165, 81955, 8275, 645, 35, 1, 262577745, 61254760, 9901860, 1290520, 139350, 12280, 840, 40, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
FORMULA
T(n, k) = Sum_{j = k..n} 4^(j - k)*(k + 1)*binomial(n + j - k, 2*j - k)* binomial(2*j - k, j - k)/(j + 1). - Detlef Meya, Jan 15 2024
EXAMPLE
Triangle starts:
[0] 1
[1] 5, 1
[2] 45, 10, 1
[3] 505, 115, 15, 1
[4] 6345, 1460, 210, 20, 1
[5] 85405, 19765, 2990, 330, 25, 1
[6] 1204245, 279710, 43635, 5220, 475, 30, 1
MATHEMATICA
T[n_, k_] := Binomial[n, k] Hypergeometric2F1[k - n, n + 1, k + 2, -4];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
T[n_, k_] := Sum[4^(j - k)*(k + 1)*Binomial[n + j - k, 2*j - k]*Binomial[2*j - k, j - k]/(j + 1), {j, k, n}];
Flatten[Table[T[n, k], {n, 0, 8}, {k, 0, n}]] (* Detlef Meya, Jan 15 2024 *)
PROG
(PARI) T(n, k) = sum(j = k, n, 4^(j - k)*(k + 1)*binomial(n + j - k, 2*j - k)* binomial(2*j - k, j - k)/(j + 1)) \\ Andrew Howroyd, Jan 15 2024
CROSSREFS
T(n, 0) = A133305(n). Row sums are A297705, alternating row sums are A131765.
Cf. A103209.
Sequence in context: A134275 A264774 A114154 * A134273 A048897 A049029
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jan 08 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 18 23:32 EDT 2024. Contains 373488 sequences. (Running on oeis4.)