The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A297568 Number of nonisomorphic proper colorings of partition star graph using four colors. 7
 4, 12, 24, 36, 40, 108, 108, 60, 216, 180, 324, 324, 84, 360, 540, 648, 972, 972, 972, 112, 540, 1080, 660, 1080, 2916, 1512, 1944, 2916, 2916, 2916, 144, 756, 1800, 1980, 1620, 5832, 4860, 4536, 3240, 8748, 8748, 5832, 8748, 8748, 8748, 180, 1008, 2700, 3960, 1980, 2268, 9720, 14580, 9072, 13608, 4860, 17496, 14580, 26244, 13284, 9720, 26244, 26244, 17496, 26244, 26244, 26244, 220, 1296, 3780, 6600, 5940, 3024, 14580 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS A partition star graph consists of a multiset of paths with lengths given by the elements of the partition attached to a distinguished root node. The ordering of the partitions is by traversing antichains in Young's lattice bottom to top, left to right. Isomorphism refers to the automorphisms of the star graph corresponding to the partition. LINKS Table of n, a(n) for n=0..73. Marko Riedel et al., Orbital chromatic polynomials FORMULA For a partition lambda we have the OCP: k Product_{p^v in lambda} C((k-1)^p+v-1, v). Here we have k=4. EXAMPLE Rows are: 4; 12; 24, 36; 40, 108, 108; 60, 216, 180, 324, 324; 84, 360, 540, 648, 972, 972, 972; MAPLE b:= (n, i)-> `if`(n=0, [4], `if`(i<1, [], [seq(map(x-> x* binomial(3^i+j-1, j), b(n-i*j, i-1))[], j=0..n/i)])): T:= n-> b(n\$2)[]: seq(T(n), n=0..10); # Alois P. Heinz, Jan 14 2018 MATHEMATICA b[n_, i_] := If[n == 0, {4}, If[i<1, {}, Table[Map[Function[x, x*Binomial[ 3^i + j - 1, j]], b[n - i*j, i - 1]], {j, 0, n/i}]] // Flatten]; T[n_] := b[n, n]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 17 2018, after Alois P. Heinz *) CROSSREFS Cf. A297567, A297569, A297570. Row sums give 4*A144067. Row lengths give A000041. Sequence in context: A285350 A072389 A218391 * A353795 A317518 A307763 Adjacent sequences: A297565 A297566 A297567 * A297569 A297570 A297571 KEYWORD nonn,tabf AUTHOR Marko Riedel, Dec 31 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 00:35 EDT 2024. Contains 372666 sequences. (Running on oeis4.)