login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A297445
a(n) = a(n-1) + 9*a(n-2) - 9*a(n-3), where a(0) = 1, a(1) = 5, a(2) = 11.
2
1, 5, 11, 47, 101, 425, 911, 3827, 8201, 34445, 73811, 310007, 664301, 2790065, 5978711, 25110587, 53808401, 225995285, 484275611, 2033957567, 4358480501, 18305618105, 39226324511, 164750562947, 353036920601, 1482755066525, 3177332285411, 13344795598727
OFFSET
0,2
COMMENTS
Conjecture: a(n) = least positive whose base-3 up-variation is n; see A297441.
FORMULA
a(n) = a(n-1) + 9*a(n-2) - 9*a(n-3) for n>2. - Corrected by Colin Barker, Jan 21 2018
G.f.: (1 + 4 x - 3 x^2)/(1 - x - 9 x^2 + 9 x^3).
a(n) = (-1 - (-3)^n + 2*3^(1+n)) / 4. - Colin Barker, Jan 21 2018
MAPLE
seq(-1/4-(-3)^n/4+3*3^n/2, n=0..40); # Robert Israel, Jan 21 2018
MATHEMATICA
LinearRecurrence[{1, 9, -9}, {1, 5, 11}, 40]]
PROG
(PARI) Vec((1 + 4*x - 3*x^2) / ((1 - x)*(1 - 3*x)*(1 + 3*x)) + O(x^40)) \\ Colin Barker, Jan 21 2018
CROSSREFS
Cf. A297442.
Sequence in context: A092358 A079029 A106953 * A149503 A149504 A149505
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 21 2018
STATUS
approved