login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = a(n-1) + 9*a(n-2) - 9*a(n-3), where a(0) = 1, a(1) = 5, a(2) = 11.
2

%I #13 Jan 21 2018 18:37:57

%S 1,5,11,47,101,425,911,3827,8201,34445,73811,310007,664301,2790065,

%T 5978711,25110587,53808401,225995285,484275611,2033957567,4358480501,

%U 18305618105,39226324511,164750562947,353036920601,1482755066525,3177332285411,13344795598727

%N a(n) = a(n-1) + 9*a(n-2) - 9*a(n-3), where a(0) = 1, a(1) = 5, a(2) = 11.

%C Conjecture: a(n) = least positive whose base-3 up-variation is n; see A297441.

%H Clark Kimberling, <a href="/A297445/b297445.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,9,-9)

%F a(n) = a(n-1) + 9*a(n-2) - 9*a(n-3) for n>2. - Corrected by _Colin Barker_, Jan 21 2018

%F G.f.: (1 + 4 x - 3 x^2)/(1 - x - 9 x^2 + 9 x^3).

%F a(n) = (-1 - (-3)^n + 2*3^(1+n)) / 4. - _Colin Barker_, Jan 21 2018

%p seq(-1/4-(-3)^n/4+3*3^n/2, n=0..40); # _Robert Israel_, Jan 21 2018

%t LinearRecurrence[{1, 9, -9}, {1, 5, 11}, 40]]

%o (PARI) Vec((1 + 4*x - 3*x^2) / ((1 - x)*(1 - 3*x)*(1 + 3*x)) + O(x^40)) \\ _Colin Barker_, Jan 21 2018

%Y Cf. A297442.

%K nonn,easy

%O 0,2

%A _Clark Kimberling_, Jan 21 2018