login
Numbers k such that 2^m == 2 (mod m*(m-1)), where m=A019320(k).
2

%I #17 Sep 06 2021 10:21:39

%S 2,3,6,7,14,19,38,42,43,86,114,127,163,254,258,326,379,487,758,762,

%T 883,974,978,1459,1766,2274,2647,2918,2922,3079,3943,5294,5298,5419,

%U 6158,7886,8754,9199,10838,11827,14407,15882,16759,18398,18474,18523,23654,23658,24967,26407,28814,32514,33518,37046,37339,39367

%N Numbers k such that 2^m == 2 (mod m*(m-1)), where m=A019320(k).

%C Also, numbers k such that A019320(k) belongs to A069051 or A217468.

%o (PARI) is_A297413(k) = my(m=polcyclo(k,2)); Mod(2,m*(m-1))^m==2;

%Y Cf. A069051, A217468, A297414.

%Y Contains A297412 as a subsequence.

%K nonn

%O 1,1

%A _Max Alekseyev_, Dec 29 2017