login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A297347 List of y-coordinates in the Babylonian Spiral. 3
0, 1, 2, 2, 1, -1, -4, -7, -10, -10, -9, -6, -2, 3, 8, 13, 17, 20, 20, 19, 17, 13, 7, 0, -7, -13, -15, -12, -7, 1, 9, 17, 23, 26, 21, 13, 4, -5, -14, -22, -25, -21, -14, -6, 4, 14, 23, 26, 19, 9, 0, 0, 1, 3, 11, 20, 30, 41, 53, 65, 76, 78, 71, 59, 48, 44, 53, 63, 75, 88, 101 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The "Babylonian Spiral" is defined and illustrated in A256111.

LINKS

Alex Meiburg, Table of n, a(n) for n = 1..10000

Lars Blomberg, Illustrations of 100, 1000 and 10000 terms of the spiral.

MathPickle, Babylonian Spiral

EXAMPLE

The first few points are (0,0), (0,1), (1,2), (3,2) -- thus the sequence starts out 0, 1, 2, 2.

MATHEMATICA

NextVec[{x_, y_}] :=

Block[{n = x^2 + y^2 + 1}, While[SquaresR[2, n] == 0, n++];

  TakeSmallestBy[

     Union[Flatten[(Transpose[

        Transpose[Tuples[{1, -1}, 2]] #] & /@

        ({{#[[1]], #[[2]]}, {#[[2]], #[[1]]}})) & /@

     PowersRepresentations[n, 2, 2], 2]],

  Mod[ArcTan[#[[2]], #[[1]]] - ArcTan[y, x], 2 Pi] &, 1][[1]]

]

Accumulate[NestList[NextVec, {0, 1}, 500]][[;; , 2]]

CROSSREFS

The x-coordinates are given in A297346. Norms of vectors are given in A256111.

Sequence in context: A132311 A254414 A199802 * A121697 A225201 A124976

Adjacent sequences:  A297344 A297345 A297346 * A297348 A297349 A297350

KEYWORD

easy,sign,look

AUTHOR

Alex Meiburg, Dec 28 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 25 06:46 EST 2020. Contains 332220 sequences. (Running on oeis4.)