The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A254414 Number A(n,k) of tilings of a k X n rectangle using polyominoes of shape I; square array A(n,k), n>=0, k>=0, read by antidiagonals. 10
 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 7, 4, 1, 1, 8, 29, 29, 8, 1, 1, 16, 124, 257, 124, 16, 1, 1, 32, 533, 2408, 2408, 533, 32, 1, 1, 64, 2293, 22873, 50128, 22873, 2293, 64, 1, 1, 128, 9866, 217969, 1064576, 1064576, 217969, 9866, 128, 1, 1, 256, 42451, 2078716, 22734496, 50796983, 22734496, 2078716, 42451, 256, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS A polyomino of shape I is a rectangle of width 1. All columns (or rows) are linear recurrences with constant coefficients. An upper bound on the order of the recurrence is A005683(k+2). This upper bound is exact for at least 1 <= k <= 10. - Andrew Howroyd, Dec 23 2019 LINKS Andrew Howroyd, Table of n, a(n) for n = 0..495 Wikipedia, Polyomino EXAMPLE Square array A(n,k) begins:   1,  1,    1,      1,        1,          1,            1, ...   1,  1,    2,      4,        8,         16,           32, ...   1,  2,    7,     29,      124,        533,         2293, ...   1,  4,   29,    257,     2408,      22873,       217969, ...   1,  8,  124,   2408,    50128,    1064576,     22734496, ...   1, 16,  533,  22873,  1064576,   50796983,   2441987149, ...   1, 32, 2293, 217969, 22734496, 2441987149, 264719566561, ... PROG (PARI) step(v, S)={vector(#v, i, sum(j=1, #v, v[j]*2^hammingweight(bitand(S[i], S[j]))))} mkS(k)={apply(b->bitand(b, 2*b+1), [2^(k-1)..2^k-1])} T(n, k)={if(k<2, if(k==0||n==0, 1, 2^(n-1)), my(S=mkS(k), v=vector(#S, i, i==1)); for(n=1, n, v=step(v, S)); vecsum(v))} \\ Andrew Howroyd, Dec 23 2019 CROSSREFS Columns (or rows) k=0-7 give: A000012, A011782, A052961, A254124, A254125, A254126, A254458, A254607. Main diagonal gives: A254127. Cf. A005683. Sequence in context: A177254 A340910 A132311 * A199802 A297347 A342623 Adjacent sequences:  A254411 A254412 A254413 * A254415 A254416 A254417 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Jan 30 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 16:17 EST 2021. Contains 349445 sequences. (Running on oeis4.)