login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A254414 Number A(n,k) of tilings of a k X n rectangle using polyominoes of shape I; square array A(n,k), n>=0, k>=0, read by antidiagonals. 10
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 7, 4, 1, 1, 8, 29, 29, 8, 1, 1, 16, 124, 257, 124, 16, 1, 1, 32, 533, 2408, 2408, 533, 32, 1, 1, 64, 2293, 22873, 50128, 22873, 2293, 64, 1, 1, 128, 9866, 217969, 1064576, 1064576, 217969, 9866, 128, 1, 1, 256, 42451, 2078716, 22734496, 50796983, 22734496, 2078716, 42451, 256, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

A polyomino of shape I is a rectangle of width 1.

All columns (or rows) are linear recurrences with constant coefficients. An upper bound on the order of the recurrence is A005683(k+2). This upper bound is exact for at least 1 <= k <= 10. - Andrew Howroyd, Dec 23 2019

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..495

Wikipedia, Polyomino

EXAMPLE

Square array A(n,k) begins:

  1,  1,    1,      1,        1,          1,            1, ...

  1,  1,    2,      4,        8,         16,           32, ...

  1,  2,    7,     29,      124,        533,         2293, ...

  1,  4,   29,    257,     2408,      22873,       217969, ...

  1,  8,  124,   2408,    50128,    1064576,     22734496, ...

  1, 16,  533,  22873,  1064576,   50796983,   2441987149, ...

  1, 32, 2293, 217969, 22734496, 2441987149, 264719566561, ...

PROG

(PARI)

step(v, S)={vector(#v, i, sum(j=1, #v, v[j]*2^hammingweight(bitand(S[i], S[j]))))}

mkS(k)={apply(b->bitand(b, 2*b+1), [2^(k-1)..2^k-1])}

T(n, k)={if(k<2, if(k==0||n==0, 1, 2^(n-1)), my(S=mkS(k), v=vector(#S, i, i==1)); for(n=1, n, v=step(v, S)); vecsum(v))} \\ Andrew Howroyd, Dec 23 2019

CROSSREFS

Columns (or rows) k=0-7 give: A000012, A011782, A052961, A254124, A254125, A254126, A254458, A254607.

Main diagonal gives: A254127.

Cf. A005683.

Sequence in context: A177254 A340910 A132311 * A199802 A297347 A342623

Adjacent sequences:  A254411 A254412 A254413 * A254415 A254416 A254417

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Jan 30 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 16:17 EST 2021. Contains 349445 sequences. (Running on oeis4.)