login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A297128
Numbers having an up-first zigzag pattern in base 4; see Comments.
4
6, 7, 11, 24, 25, 27, 28, 29, 30, 44, 45, 46, 97, 98, 99, 100, 102, 103, 108, 109, 110, 113, 114, 115, 116, 118, 119, 120, 121, 123, 177, 178, 179, 180, 182, 183, 184, 185, 187, 388, 390, 391, 392, 393, 395, 396, 397, 398, 401, 402, 403, 408, 409, 411, 412
OFFSET
1,1
COMMENTS
A number n having base-b digits d(m), d(m-1), ..., d(0) such that d(i) != d(i+1) for 0 <= i < m shows a zigzag pattern of one or more segments, in the following sense. Writing U for up and D for down, there are two kinds of patterns: U, UD, UDU, UDUD, ... and D, DU, DUD, DUDU, ... . In the former case, we say n has an "up-first zigzag pattern in base b"; in the latter, a "down-first zigzag pattern in base b". Example: 2,4,5,3,0,1,4,2 has segments 2,4,5; 5,3,0; 0,1,4; and 4,2, so that 24530142, with pattern UDUD, has an up-first zigzag pattern in base 10, whereas 4,2,5,3,0,1,4,2 has a down-first pattern. The sequences A297128..A297130 partition the natural numbers. See the guide at A297146.
EXAMPLE
Base-4 digits of 3003: 2,3,2,3,2,3, with pattern UDUDU, so that 3003 is in the sequence.
MATHEMATICA
a[n_, b_] := Sign[Differences[IntegerDigits[n, b]]]; z = 300;
b = 4; t = Table[a[n, b], {n, 1, 10*z}];
u = Select[Range[z], ! MemberQ[t[[#]], 0] && First[t[[#]]] == 1 &] (* A297128 *)
v = Select[Range[z], ! MemberQ[t[[#]], 0] && First[t[[#]]] == -1 &] (* A297129 *)
Complement[Range[z], Union[u, v]] (* A297130 *)
CROSSREFS
Sequence in context: A347512 A296695 A228948 * A035110 A011990 A105085
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Jan 13 2018
STATUS
approved