OFFSET
0,1
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> 1 + sqrt(2). See A296245 for a guide to related sequences.
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..1000
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 3, a(1) = 5, b(0) = 1, b(1) = 2, b(2) = 4
a(2) = 2*a(1) + a(0) - b(2) = 9
Complement: (b(n)) = (1, 2, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18, 19, ...)
MATHEMATICA
a[0] = 3; a[1] = 5; b[0] = 1; b[1] = 2; b[2] = 4;
a[n_] := a[n] = 2 a[n - 1] + a[n - 2] - b[n];
j = 1; While[j < 9, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
u = Table[a[n], {n, 0, k}]; (* A297011 *)
Table[b[n], {n, 0, 25}] (* complement *)
Take[u, 30]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 13 2018
STATUS
approved