login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A296922
Primes p such that Legendre(-5,p) = 0 or 1.
3
3, 5, 7, 23, 29, 41, 43, 47, 61, 67, 83, 89, 101, 103, 107, 109, 127, 149, 163, 167, 181, 223, 227, 229, 241, 263, 269, 281, 283, 307, 347, 349, 367, 383, 389, 401, 409, 421, 443, 449, 461, 463, 467, 487, 503, 509, 521, 523, 541, 547, 563, 569, 587, 601, 607, 641, 643
OFFSET
1,1
COMMENTS
Primes == 1, 3, 5, 7, or 9 (mod 20). Primes whose 10's digit is even. - Robert Israel, Dec 27 2017
LINKS
FORMULA
a(n) = A240920(n+1) for n >= 1. - Georg Fischer, Oct 30 2018
MAPLE
Load the Maple program HH given in A296920. Then run HH(-5, 200);
select(isprime, {seq(seq(20*i+j, j=[1, 3, 5, 7, 9]), i=0..100)}); # Robert Israel, Dec 27 2017
MATHEMATICA
Select[Prime@ Range@ 120, MemberQ[{0, 1}, KroneckerSymbol[-5, #]] &] (* or *)
Select[Prime@ Range@ 120, MemberQ[Range[1, 9, 2], Mod[#, 20]] &] (* Michael De Vlieger, Jan 02 2018 *)
PROG
(PARI) lista(nn) = forprime(p=2, nn, if (kronecker(-5, p) >= 0, print1(p, ", "))); \\ Michel Marcus, Dec 26 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 25 2017
STATUS
approved