Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Dec 21 2017 10:46:52
%S 288,1744,7200,21744,56448,126016,259200,487600,871200,1467216,
%T 2384928,3716944,5644800,8306944,11985408,16875216,23392800,31800400,
%U 42688800,56397616,73738368,95137344,121680000,153887344,193179168,240177616,296704800,363488400
%N Detour index for the n X n torus grid graph.
%C The n X n torus grid graph is Hamilton-connected for odd n, giving a(n) = n^2*(n^2 - 1)^2/2 for odd n.
%H Colin Barker, <a href="/A296784/b296784.txt">Table of n, a(n) for n = 3..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DetourIndex.html">Detour Index</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TorusGridGraph.html">Torus Grid Graph</a>
%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (2,4,-10,-5,20,0,-20,5,10,-4,-2,1).
%F a(n) = n^2*(n^2 - 1)^2/2 for odd n.
%F a(n) = A296779(n) = n^2*(2*n^4 - 5*n^2 + 4)/4 for even n. - _Andrew Howroyd_, Dec 21 2017
%F From _Colin Barker_, Dec 21 2017: (Start)
%F G.f.: 16*x^3*(18 + 73*x + 160*x^2 + 203*x^3 + 190*x^4 + 69*x^5 - 4*x^6 + 6*x^7 + 10*x^8 - 4*x^9 - 2*x^10 + x^11) / ((1 - x)^7*(1 + x)^5).
%F a(n) = 2*a(n-1) + 4*a(n-2) - 10*a(n-3) - 5*a(n-4) + 20*a(n-5) - 20*a(n-7) + 5*a(n-8) + 10*a(n-9) - 4*a(n-10) - 2*a(n-11) + a(n-12) for n>14.
%F (End)
%t a[n_] := If[OddQ[n], (1/2)*n^2*(n^2 - 1)^2, (1/4)*n^2*(2*n^4 - 5*n^2 + 4)]; Table[a[n], {n, 3, 30}] (* _Jean-François Alcover_, Dec 21 2017, after _Andrew Howroyd_ *)
%t LinearRecurrence[{2, 4, -10, -5, 20, 0, -20, 5, 10, -4, -2, 1}, {288, 1744, 7200, 21744, 56448, 126016, 259200, 487600, 871200, 1467216, 2384928, 3716944}, 20] (* _Eric W. Weisstein_, Dec 21 2017 *)
%t CoefficientList[Series[(16 (18 + 73 x + 160 x^2 + 203 x^3 + 190 x^4 + 69 x^5 - 4 x^6 + 6 x^7 + 10 x^8 - 4 x^9 - 2 x^10 + x^11))/((1 - x)^7 (1 + x)^5), {x, 0, 20}], x] (* _Eric W. Weisstein_, Dec 21 2017 *)
%o (PARI) a(n) = n^2 * if(n%2, (n^2 - 1)^2/2, (2*n^4 - 5*n^2 + 4)/4); \\ _Andrew Howroyd_, Dec 21 2017
%o (PARI) Vec(16*x^3*(18 + 73*x + 160*x^2 + 203*x^3 + 190*x^4 + 69*x^5 - 4*x^6 + 6*x^7 + 10*x^8 - 4*x^9 - 2*x^10 + x^11) / ((1 - x)^7*(1 + x)^5) + O(x^40)) \\ _Colin Barker_, Dec 21 2017
%Y Cf. A296779.
%K nonn,easy
%O 3,1
%A _Eric W. Weisstein_, Dec 20 2017
%E Terms a(8) and beyond from _Andrew Howroyd_, Dec 21 2017