login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296784
Detour index for the n X n torus grid graph.
2
288, 1744, 7200, 21744, 56448, 126016, 259200, 487600, 871200, 1467216, 2384928, 3716944, 5644800, 8306944, 11985408, 16875216, 23392800, 31800400, 42688800, 56397616, 73738368, 95137344, 121680000, 153887344, 193179168, 240177616, 296704800, 363488400
OFFSET
3,1
COMMENTS
The n X n torus grid graph is Hamilton-connected for odd n, giving a(n) = n^2*(n^2 - 1)^2/2 for odd n.
LINKS
Eric Weisstein's World of Mathematics, Detour Index
Eric Weisstein's World of Mathematics, Torus Grid Graph
Index entries for linear recurrences with constant coefficients, signature (2,4,-10,-5,20,0,-20,5,10,-4,-2,1).
FORMULA
a(n) = n^2*(n^2 - 1)^2/2 for odd n.
a(n) = A296779(n) = n^2*(2*n^4 - 5*n^2 + 4)/4 for even n. - Andrew Howroyd, Dec 21 2017
From Colin Barker, Dec 21 2017: (Start)
G.f.: 16*x^3*(18 + 73*x + 160*x^2 + 203*x^3 + 190*x^4 + 69*x^5 - 4*x^6 + 6*x^7 + 10*x^8 - 4*x^9 - 2*x^10 + x^11) / ((1 - x)^7*(1 + x)^5).
a(n) = 2*a(n-1) + 4*a(n-2) - 10*a(n-3) - 5*a(n-4) + 20*a(n-5) - 20*a(n-7) + 5*a(n-8) + 10*a(n-9) - 4*a(n-10) - 2*a(n-11) + a(n-12) for n>14.
(End)
MATHEMATICA
a[n_] := If[OddQ[n], (1/2)*n^2*(n^2 - 1)^2, (1/4)*n^2*(2*n^4 - 5*n^2 + 4)]; Table[a[n], {n, 3, 30}] (* Jean-François Alcover, Dec 21 2017, after Andrew Howroyd *)
LinearRecurrence[{2, 4, -10, -5, 20, 0, -20, 5, 10, -4, -2, 1}, {288, 1744, 7200, 21744, 56448, 126016, 259200, 487600, 871200, 1467216, 2384928, 3716944}, 20] (* Eric W. Weisstein, Dec 21 2017 *)
CoefficientList[Series[(16 (18 + 73 x + 160 x^2 + 203 x^3 + 190 x^4 + 69 x^5 - 4 x^6 + 6 x^7 + 10 x^8 - 4 x^9 - 2 x^10 + x^11))/((1 - x)^7 (1 + x)^5), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 21 2017 *)
PROG
(PARI) a(n) = n^2 * if(n%2, (n^2 - 1)^2/2, (2*n^4 - 5*n^2 + 4)/4); \\ Andrew Howroyd, Dec 21 2017
(PARI) Vec(16*x^3*(18 + 73*x + 160*x^2 + 203*x^3 + 190*x^4 + 69*x^5 - 4*x^6 + 6*x^7 + 10*x^8 - 4*x^9 - 2*x^10 + x^11) / ((1 - x)^7*(1 + x)^5) + O(x^40)) \\ Colin Barker, Dec 21 2017
CROSSREFS
Cf. A296779.
Sequence in context: A280936 A250871 A128392 * A235078 A235072 A235769
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Dec 20 2017
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Dec 21 2017
STATUS
approved