

A296713


Numbers n whose base10 digits d(m), d(m1), ..., d(0) have #(rises) > #(falls); see Comments.


3



12, 13, 14, 15, 16, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 34, 35, 36, 37, 38, 39, 45, 46, 47, 48, 49, 56, 57, 58, 59, 67, 68, 69, 78, 79, 89, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 133, 134, 135, 136, 137, 138, 139
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296712A296714 partition the natural numbers. See the guide at A296712.


LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000


EXAMPLE

The base10 digits of 139 are 1,3,9; here #(rises) = 2 and #(falls) = 0, so that 139 is in the sequence.


MATHEMATICA

z = 200; b = 10; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
Select[Range [z], Count[d[#], 1] == Count[d[#], 1] &] (* A296712 *)
Select[Range [z], Count[d[#], 1] < Count[d[#], 1] &] (* A296713 *)
Select[Range [z], Count[d[#], 1] > Count[d[#], 1] &] (* A296714 *)


CROSSREFS

Cf. A296712, A296714, A296712.
Sequence in context: A162792 A297272 A071589 * A297146 A267761 A324322
Adjacent sequences: A296710 A296711 A296712 * A296714 A296715 A296716


KEYWORD

nonn,base,easy


AUTHOR

Clark Kimberling, Jan 08 2018


STATUS

approved



