login
A296703
Numbers whose base-7 digits d(m), d(m-1), ... d(0) have #(rises) = #(falls); see Comments.
4
1, 2, 3, 4, 5, 6, 8, 16, 24, 32, 40, 48, 50, 51, 52, 53, 54, 55, 57, 63, 64, 70, 71, 72, 77, 78, 79, 80, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 104, 107, 108, 109, 110, 111, 114, 119, 120, 121, 126, 127, 128, 129, 133, 134, 135
OFFSET
1,2
COMMENTS
A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296703-A296705 partition the natural numbers. See the guide at A296712.
LINKS
EXAMPLE
The base-7 digits of 135 are 2,5,2; here #(rises) = 1 and #(falls) = 1, so 135 is in the sequence.
MATHEMATICA
z = 200; b = 7; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296703 *)
Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296704 *)
Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296705 *)
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Jan 07 2018
STATUS
approved