login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows T(n,k): number of undirected cycles of length k in the n-antiprism graph (n = 3...; k = 3..2n)
0

%I #6 Dec 17 2017 00:22:33

%S 8,15,24,16,8,10,24,52,56,29,10,10,12,35,100,160,140,56,12,12,12,14,

%T 48,177,388,498,348,110,14,14,14,14,16,63,294,833,1428,1470,854,225,

%U 16,16,16,16,16,18,80,464,1632,3532,4848,4176,2080,469,18,18,18,18,18,18,20,99,702,2979,7848,13545,15534,11493,5004,991

%N Triangle read by rows T(n,k): number of undirected cycles of length k in the n-antiprism graph (n = 3...; k = 3..2n)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AntiprismGraph.html">Antiprism Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CyclePolynomial.html">Cycle Polynomial</a>

%F Polynomials satisfy the linear recurrence

%F a(n) = (2 + 2 x + 3 x^2)*a(n-1)

%F + (-1 - 4 x - 7 x^2 - 4 x^3 - x^4)*a(n-2)

%F + (-x (-2 - 5 x - 8 x^2 - 4 x^3 - 2 x^4 + 2 x^5))*a(n-3)

%F + (x^2 (-1 - 4 x - 5 x^2 - 4 x^3 + 3 x^4))*a(n-4)

%F + (x^4 (2 + 2 x + x^6))*a(n-5)

%F - (x^6 (1 + 2 x^4))*a(n-6)

%F + x^10*a(n-7)

%e Written as cycle polynomials:

%e 8 x^3 + 15 x^4 + 24 x^5 + 16 x^6

%e 8 x^3 + 10 x^4 + 24 x^5 + 52 x^6 + 56 x^7 + 29 x^8

%e 10 x^3 + 10 x^4 + 12 x^5 + 35 x^6 + 100 x^7 + 160 x^8 + 140 x^9 + 56 x^10

%e ...

%e giving the array

%e 8, 15, 24, 16;

%e 8, 10, 24, 52, 56, 29;

%e 10, 10, 12, 35, 100, 160, 140, 56;

%e ...

%t CoefficientList[LinearRecurrence[{2 + 2 x + 3 x^2, -1 - 4 x - 7 x^2 - 4 x^3 - x^4, -x (-2 - 5 x - 8 x^2 - 4 x^3 - 2 x^4 + 2 x^5), x^2 (-1 - 4 x - 5 x^2 - 4 x^3 + 3 x^4), x^4 (2 + 2 x + x^6), -x^6 (1 + 2 x^4), x^10}, {8 x^3 + 15 x^4 + 24 x^5 + 16 x^6, 8 x^3 + 10 x^4 + 24 x^5 + 52 x^6 + 56 x^7 + 29 x^8, 10 x^3 + 10 x^4 + 12 x^5 + 35 x^6 + 100 x^7 + 160 x^8 + 140 x^9 + 56 x^10, 12 x^3 + 12 x^4 + 12 x^5 + 14 x^6 + 48 x^7 + 177 x^8 + 388 x^9 + 498 x^10 + 348 x^11 + 110 x^12, 14 x^3 + 14 x^4 + 14 x^5 + 14 x^6 + 16 x^7 + 63 x^8 + 294 x^9 + 833 x^10 + 1428 x^11 + 1470 x^12 + 854 x^13 + 225 x^14, 16 x^3 + 16 x^4 + 16 x^5 + 16 x^6 + 16 x^7 + 18 x^8 + 80 x^9 + 464 x^10 + 1632 x^11 + 3532 x^12 + 4848 x^13 + 4176 x^14 + 2080 x^15 + 469 x^16, 18 x^3 + 18 x^4 + 18 x^5 + 18 x^6 + 18 x^7 + 18 x^8 + 20 x^9 + 99 x^10 + 702 x^11 + 2979 x^12 + 7848 x^13 + 13545 x^14 + 15534 x^15 + 11493 x^16 + 5004 x^17 + 991 x^18}, 10]/x^3, x] // Flatten

%K nonn,tabf

%O 1,1

%A _Eric W. Weisstein_, Dec 15 2017