login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296542
Triangle read by rows T(n,k): number of undirected cycles of length k in the n-antiprism graph (n = 3...; k = 3..2n)
0
8, 15, 24, 16, 8, 10, 24, 52, 56, 29, 10, 10, 12, 35, 100, 160, 140, 56, 12, 12, 12, 14, 48, 177, 388, 498, 348, 110, 14, 14, 14, 14, 16, 63, 294, 833, 1428, 1470, 854, 225, 16, 16, 16, 16, 16, 18, 80, 464, 1632, 3532, 4848, 4176, 2080, 469, 18, 18, 18, 18, 18, 18, 20, 99, 702, 2979, 7848, 13545, 15534, 11493, 5004, 991
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Antiprism Graph
Eric Weisstein's World of Mathematics, Cycle Polynomial
FORMULA
Polynomials satisfy the linear recurrence
a(n) = (2 + 2 x + 3 x^2)*a(n-1)
+ (-1 - 4 x - 7 x^2 - 4 x^3 - x^4)*a(n-2)
+ (-x (-2 - 5 x - 8 x^2 - 4 x^3 - 2 x^4 + 2 x^5))*a(n-3)
+ (x^2 (-1 - 4 x - 5 x^2 - 4 x^3 + 3 x^4))*a(n-4)
+ (x^4 (2 + 2 x + x^6))*a(n-5)
- (x^6 (1 + 2 x^4))*a(n-6)
+ x^10*a(n-7)
EXAMPLE
Written as cycle polynomials:
8 x^3 + 15 x^4 + 24 x^5 + 16 x^6
8 x^3 + 10 x^4 + 24 x^5 + 52 x^6 + 56 x^7 + 29 x^8
10 x^3 + 10 x^4 + 12 x^5 + 35 x^6 + 100 x^7 + 160 x^8 + 140 x^9 + 56 x^10
...
giving the array
8, 15, 24, 16;
8, 10, 24, 52, 56, 29;
10, 10, 12, 35, 100, 160, 140, 56;
...
MATHEMATICA
CoefficientList[LinearRecurrence[{2 + 2 x + 3 x^2, -1 - 4 x - 7 x^2 - 4 x^3 - x^4, -x (-2 - 5 x - 8 x^2 - 4 x^3 - 2 x^4 + 2 x^5), x^2 (-1 - 4 x - 5 x^2 - 4 x^3 + 3 x^4), x^4 (2 + 2 x + x^6), -x^6 (1 + 2 x^4), x^10}, {8 x^3 + 15 x^4 + 24 x^5 + 16 x^6, 8 x^3 + 10 x^4 + 24 x^5 + 52 x^6 + 56 x^7 + 29 x^8, 10 x^3 + 10 x^4 + 12 x^5 + 35 x^6 + 100 x^7 + 160 x^8 + 140 x^9 + 56 x^10, 12 x^3 + 12 x^4 + 12 x^5 + 14 x^6 + 48 x^7 + 177 x^8 + 388 x^9 + 498 x^10 + 348 x^11 + 110 x^12, 14 x^3 + 14 x^4 + 14 x^5 + 14 x^6 + 16 x^7 + 63 x^8 + 294 x^9 + 833 x^10 + 1428 x^11 + 1470 x^12 + 854 x^13 + 225 x^14, 16 x^3 + 16 x^4 + 16 x^5 + 16 x^6 + 16 x^7 + 18 x^8 + 80 x^9 + 464 x^10 + 1632 x^11 + 3532 x^12 + 4848 x^13 + 4176 x^14 + 2080 x^15 + 469 x^16, 18 x^3 + 18 x^4 + 18 x^5 + 18 x^6 + 18 x^7 + 18 x^8 + 20 x^9 + 99 x^10 + 702 x^11 + 2979 x^12 + 7848 x^13 + 13545 x^14 + 15534 x^15 + 11493 x^16 + 5004 x^17 + 991 x^18}, 10]/x^3, x] // Flatten
CROSSREFS
Sequence in context: A126622 A109332 A359000 * A296546 A167986 A015727
KEYWORD
nonn,tabf
AUTHOR
Eric W. Weisstein, Dec 15 2017
STATUS
approved