Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Feb 23 2019 07:23:47
%S 1,5,16,37,96,254,654,1709,4472,11621,30257,78899,205534,535394,
%T 1395017,3634476,9468722,24669483,64272370,167449745,436262198,
%U 1136608103,2961236309,7714995835,20100110050,52367403411,136434332477,355456392933
%N Number of n X 3 0..1 arrays with each 1 horizontally, vertically or antidiagonally adjacent to 2 or 4 neighboring 1s.
%H R. H. Hardin, <a href="/A296536/b296536.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 2*a(n-1) - a(n-2) + 5*a(n-3) + a(n-4) + 6*a(n-5) + 7*a(n-6) + a(n-7) + 3*a(n-8) + 3*a(n-9) - 3*a(n-10) - 4*a(n-11) - a(n-12).
%F Empirical g.f.: x*(1 + 3*x + 7*x^2 + 5*x^3 + 12*x^4 + 8*x^5 + 4*x^6 + 6*x^7 - 7*x^9 - 5*x^10 - x^11) / ((1 + x^2 + x^3)*(1 - 2*x - 4*x^3 + x^4 - 2*x^5 - 4*x^6 + 3*x^8 + x^9)). - _Colin Barker_, Feb 23 2019
%e Some solutions for n=7:
%e ..0..1..1. .1..1..0. .0..0..0. .0..1..0. .0..0..0. .0..0..1. .0..1..0
%e ..0..1..0. .1..0..0. .1..1..0. .1..1..1. .1..1..0. .1..1..1. .1..1..1
%e ..0..0..0. .0..0..1. .1..0..0. .0..1..0. .1..0..0. .1..0..0. .0..1..0
%e ..1..1..0. .0..1..1. .0..0..1. .1..1..0. .0..0..0. .0..1..1. .1..1..0
%e ..1..0..0. .0..0..0. .0..1..1. .0..0..0. .1..1..0. .0..1..0. .0..0..1
%e ..0..1..0. .1..1..0. .0..0..0. .0..0..0. .1..0..0. .1..1..0. .1..1..1
%e ..1..1..0. .1..0..0. .0..0..0. .0..0..0. .0..0..0. .0..0..0. .1..0..0
%Y Column 3 of A296541.
%K nonn
%O 1,2
%A _R. H. Hardin_, Dec 15 2017