login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296536
Number of n X 3 0..1 arrays with each 1 horizontally, vertically or antidiagonally adjacent to 2 or 4 neighboring 1s.
1
1, 5, 16, 37, 96, 254, 654, 1709, 4472, 11621, 30257, 78899, 205534, 535394, 1395017, 3634476, 9468722, 24669483, 64272370, 167449745, 436262198, 1136608103, 2961236309, 7714995835, 20100110050, 52367403411, 136434332477, 355456392933
OFFSET
1,2
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) - a(n-2) + 5*a(n-3) + a(n-4) + 6*a(n-5) + 7*a(n-6) + a(n-7) + 3*a(n-8) + 3*a(n-9) - 3*a(n-10) - 4*a(n-11) - a(n-12).
Empirical g.f.: x*(1 + 3*x + 7*x^2 + 5*x^3 + 12*x^4 + 8*x^5 + 4*x^6 + 6*x^7 - 7*x^9 - 5*x^10 - x^11) / ((1 + x^2 + x^3)*(1 - 2*x - 4*x^3 + x^4 - 2*x^5 - 4*x^6 + 3*x^8 + x^9)). - Colin Barker, Feb 23 2019
EXAMPLE
Some solutions for n=7:
..0..1..1. .1..1..0. .0..0..0. .0..1..0. .0..0..0. .0..0..1. .0..1..0
..0..1..0. .1..0..0. .1..1..0. .1..1..1. .1..1..0. .1..1..1. .1..1..1
..0..0..0. .0..0..1. .1..0..0. .0..1..0. .1..0..0. .1..0..0. .0..1..0
..1..1..0. .0..1..1. .0..0..1. .1..1..0. .0..0..0. .0..1..1. .1..1..0
..1..0..0. .0..0..0. .0..1..1. .0..0..0. .1..1..0. .0..1..0. .0..0..1
..0..1..0. .1..1..0. .0..0..0. .0..0..0. .1..0..0. .1..1..0. .1..1..1
..1..1..0. .1..0..0. .0..0..0. .0..0..0. .0..0..0. .0..0..0. .1..0..0
CROSSREFS
Column 3 of A296541.
Sequence in context: A188427 A022496 A372403 * A041044 A042645 A218259
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 15 2017
STATUS
approved