login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296225
Solution of the complementary equation a(n) = a(0)*b(n-1) + a(1)*b(n-2) + ... + a(n-1)*b(0) + n, where a(0) = 1, a(1) = 3, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
2
1, 3, 12, 44, 161, 588, 2147, 7839, 28621, 104498, 381533, 1393015, 5086038, 18569636, 67799608, 247543185, 903805055, 3299883119, 12048205018, 43989207775, 160609019998, 586399678681, 2141004179974, 7817021504815, 28540731390577, 104205079621096
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295862 for a guide to related sequences.
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
a(2) = a(0)*b(1) + a(1)*b(0) + 2 = 12
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, ...)
MATHEMATICA
mex[list_] := NestWhile[# + 1 &, 1, MemberQ[list, #] &];
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = n + Sum[a[k]*b[n - k - 1], {k, 0, n - 1}];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 200}] (* A296225 *)
Table[b[n], {n, 0, 20}]
N[Table[a[n]/a[n - 1], {n, 1, 200, 10}], 200];
RealDigits[Last[t], 10][[1]] (* A296226 *)
CROSSREFS
Sequence in context: A167477 A190051 A220633 * A109437 A331473 A005656
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 10 2017
STATUS
approved