login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296107
Twin prime pairs both of which have the same number of prime digits.
1
3, 5, 5, 7, 29, 31, 809, 811, 1229, 1231, 1289, 1291, 2129, 2131, 2309, 2311, 2729, 2731, 2789, 2791, 2999, 3001, 3299, 3301, 3329, 3331, 3389, 3391, 3929, 3931, 4229, 4231, 5009, 5011, 5099, 5101, 6089, 6091, 6299, 6301, 6689, 6691, 7589, 7591, 8009, 8011
OFFSET
1,1
COMMENTS
This was essentially the original definition of A158284 but the given terms to that sequence did not match this definition.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
3929 and 3931 are twin primes and both have two prime digits.
MATHEMATICA
Select[Partition[Prime[Range[2000]], 2, 1], #[[2]]-#[[1]]==2 && Count[ IntegerDigits[#[[1]]], _?PrimeQ]==Count[IntegerDigits[#[[2]]], _?PrimeQ]&]//Flatten
PROG
(PARI) ct(n)=my(d=digits(n)); sum(i=1, #d, isprime(d[i]))
do(lim)=my(v=List(), p=3); forprime(q=5, lim+2, if(q-p==2 && ct(p)==ct(q), listput(v, p); listput(v, q)); p=q); Vec(v) \\ Charles R Greathouse IV, Dec 05 2017
CROSSREFS
Cf. A158284.
Sequence in context: A226540 A309572 A366679 * A158331 A197286 A019632
KEYWORD
nonn,base
AUTHOR
Harvey P. Dale, Dec 04 2017
STATUS
approved