login
A296067
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} ((1 + x^(2*j-1))/(1 + x^(2*j)))^k.
3
1, 1, 0, 1, 1, 0, 1, 2, -1, 0, 1, 3, -1, 0, 0, 1, 4, 0, -2, 1, 0, 1, 5, 2, -5, 3, 0, 0, 1, 6, 5, -8, 3, 2, -1, 0, 1, 7, 9, -10, -1, 9, -4, -1, 0, 1, 8, 14, -10, -10, 20, -7, -4, 2, 0, 1, 9, 20, -7, -24, 31, -2, -15, 5, 1, 0, 1, 10, 27, 0, -42, 36, 20, -40, 9, 8, -2, 0, 1, 11, 35, 12, -62, 28, 65, -75, 3, 27, -8, -1, 0
OFFSET
0,8
FORMULA
G.f. of column k: Product_{j>=1} ((1 + x^(2*j-1))/(1 + x^(2*j)))^k.
G.f. of column k: (x^(1/8)*theta_2(sqrt(x))/theta_2(x))^k, where theta_() is the Jacobi theta function.
EXAMPLE
G.f. of column k: A_k(x) = 1 + k*x + (1/2)*k*(k - 3)*x^2 + (1/6)*k*(k^2 - 9*k + 8)*x^3 + (1/24)*k*(k^3 - 18*k^2 + 59*k - 18)*x^4 + (1/120)*k*(k^4 - 30*k^3 + 215*k^2 - 330*k + 144)*x^5 + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, -1, -1, 0, 2, 5, ...
0, 0, -2, -5, -8, -10, ...
0, 1, 3, 3, -1, -10, ...
0, 0, 2, 9, 20, 31, ...
MATHEMATICA
Table[Function[k, SeriesCoefficient[Product[((1 + x^(2 i - 1))/(1 + x^(2 i)))^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
Table[Function[k, SeriesCoefficient[(x^(1/8) EllipticTheta[2, 0, x^(1/2)]/EllipticTheta[2, 0, x])^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
CROSSREFS
Columns k=0..8 give A000007, A029838, A029839, A029840, A029841, A029842, A029843, A029844, A029845 (with offset 0).
Main diagonal gives A296043.
Cf. A296068.
Sequence in context: A131185 A307819 A286354 * A306713 A303810 A052249
KEYWORD
sign,tabl
AUTHOR
Ilya Gutkovskiy, Dec 04 2017
STATUS
approved