login
A295914
Number of n X 4 0..1 arrays with each 1 adjacent to 0 or 3 king-move neighboring 1s.
1
8, 28, 115, 467, 1880, 7604, 30721, 124117, 501512, 2026304, 8187195, 33079959, 133657824, 540037688, 2181994609, 8816237625, 35621557528, 143927081684, 581530015059, 2349642293451, 9493609553944, 38358444014860, 154985331853649
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + 7*a(n-2) + 6*a(n-3) - 3*a(n-4) - 4*a(n-5) + a(n-6).
Empirical g.f.: x*(8 + 12*x + 3*x^2 - 7*x^3 - 3*x^4 + x^5) / ((1 + x)*(1 - 3*x - 4*x^2 - 2*x^3 + 5*x^4 - x^5)). - Colin Barker, Feb 22 2019
EXAMPLE
Some solutions for n=7:
..1..0..0..0. .0..1..0..0. .0..0..0..1. .0..0..0..1. .0..0..0..1
..0..0..1..0. .0..0..0..0. .1..0..0..0. .1..0..0..0. .1..1..0..0
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..0. .1..1..0..0
..1..1..0..0. .0..0..0..0. .0..1..0..1. .0..0..0..0. .0..0..0..1
..1..1..0..0. .0..0..1..0. .0..0..0..0. .0..0..0..0. .1..0..0..0
..0..0..0..1. .1..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
..0..0..0..0. .0..0..1..0. .0..0..0..0. .0..0..0..1. .0..1..0..0
CROSSREFS
Column 4 of A295918.
Sequence in context: A317607 A306545 A358285 * A054857 A241893 A200188
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 29 2017
STATUS
approved