login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295818
Primes p such that p+d is composite for all divisors d of p^2-1.
1
76333, 80077, 106243, 115603, 155333, 175963, 224683, 279353, 281207, 299653, 309157, 312253, 314267, 318523, 361093, 413053, 428083, 526997, 533893, 573829, 580093, 605533, 625237, 637243, 655987, 661993, 706633, 708403, 716747, 723803, 737293, 740227, 741347, 741373, 766967, 775757, 776267, 776317
OFFSET
1,1
COMMENTS
Primes n such that A295798(A000720(n)) = 0.
Primes n such that no semiprime with least prime factor n is in A143958.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 2000 from Robert Israel)
MAPLE
filter:= p -> isprime(p) and andmap(t -> not isprime(p+t), numtheory:-divisors(p^2-1)):
select(filter, [seq(i, i=3..10^6, 2)]);
PROG
(PARI) is(n) = if(isprime(n), fordiv(n^2-1, d, if(isprime(n+d), return(0))); 1, 0) \\ Iain Fox, Nov 27 2017
(PARI) is(n)=my(o=valuation(n+1, 2), f1=factor((n-1)<<o), f2=factor((n+1)>>o, f), f=Mat(vecsort(Vec(concat(f1~, f2~)), 1))~); fordiv(f, d, if(isprime(n+d), return(0))); isprime(n) \\ Charles R Greathouse IV, Nov 28 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Nov 27 2017
STATUS
approved