login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295811
G.f. A(x) satisfies: [x^(n-1)] A(x)^(n^2) = 2*n * [x^(n-2)] A(x)^(n^2) for n>=2, with A(0) = 1.
3
1, 1, 2, 11, 140, 2898, 80844, 2786091, 113184008, 5266198778, 275248731860, 15939117549502, 1012084698990904, 69901132180300132, 5217426460077854712, 418615099531669351443, 35942031310982080239120, 3289533291926922095871546, 319841125714352173292953668, 32937612567848507536114539402, 3582858531960091228861488651864
OFFSET
0,3
COMMENTS
Compare g.f. to: [x^(n-1)] G(x)^n = 2 * [x^(n-2)] G(x)^n for n>=2 holds when G(x) = 1/(1-x).
LINKS
FORMULA
a(2^k - 1) is odd for k>=0 and a(n) is even elsewhere (conjecture).
a(n) ~ c * d^n * n! / n^3, where d = -4/(LambertW(-2*exp(-2))*(2+LambertW(-2*exp(-2)))) = 6.176554609483480358231680164050876553672889794284... and c = 2.719099850893334482... - Vaclav Kotesovec, Feb 07 2018
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 140*x^4 + 2898*x^5 + 80844*x^6 + 2786091*x^7 + 113184008*x^8 + 5266198778*x^9 + 275248731860*x^10 + ...
ILLUSTRATION OF THE DEFINITION.
The table of coefficients of x^k in A(x)^(n^2) begins:
n=1: [1, 1, 2, 11, 140, 2898, 80844, ...];
n=2: [1, 4, 14, 72, 741, 13724, 364546, ...];
n=3: [1, 9, 54, 327, 2826, 42660, 1017720, ...];
n=4: [1, 16, 152, 1216, 10540, 129376, 2559792, ...];
n=5: [1, 25, 350, 3775, 37750, 427480, 6820800, ...];
n=6: [1, 36, 702, 10056, 123165, 1477980, 20712546, ...];
n=7: [1, 49, 1274, 23667, 359856, 4953998, 69355972, ...]; ...
in which the main diagonal
D0 = [1, 4, 54, 1216, 37750, 1477980, 69355972, 3775816704, ...]
and the adjacent diagonal
D1 = [1, 9, 152, 3775, 123165, 4953998, 235988544, 12954335103, ...]
are related by D0[n-1] = 2*n*D1[n-2] for n>=2.
The related sequence D0[n-1]/n^2, n>=1, begins:
[1, 1, 6, 76, 1510, 41055, 1415428, 58997136, 2878741134, 160698224230, ...].
PROG
(PARI) {a(n) = my(A=[1]); for(m=2, n+1, A=concat(A, 0); V=Vec(Ser(A)^(m^2)); A[#A] = V[#A-1]*2/m - V[#A]/m^2 ); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 02 2018
STATUS
approved