login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295769
Triangular numbers that can be represented as a product of two triangular numbers greater than 1, and as a product of three triangular numbers greater than 1.
3
630, 990, 4095, 15400, 19110, 25200, 37128, 61425, 79800, 105570, 122265, 145530, 176715, 192510, 437580, 500500, 749700, 828828, 1185030, 2031120, 2162160, 2821500, 4279275, 4573800, 4744740, 4959675, 5364450, 6053460, 7556328, 8817900, 13857480, 15992340
OFFSET
1,1
COMMENTS
Duplicates in the products are allowed.
A subsequence of A188630.
EXAMPLE
630 = 105*6 = 21*10*3.
990 = 66*15 = 55*6*3.
MAPLE
A295769 := proc(limit) local t, E, G, n, k, j, c, b, d, ist; E:=NULL; G:=NULL;
t := proc(n) option remember; iquo(n*(n+1), 2) end;
ist := proc(n) option remember; n = t(floor(sqrt(2*n))) end;
for n from 2 do
c := t(n); if c > limit then break fi;
for k from 2 do
b := c*t(k); if b > limit then break fi;
if ist(b) then E := E, b fi;
for j from 2 do
d := b*t(j); if d > limit then break fi;
if ist(d) then G := G, d fi
od od od; {E} intersect {G} end:
A295769(200000); # Peter Luschny, Dec 21 2017
CROSSREFS
Sequence in context: A177421 A333503 A173423 * A110904 A171258 A234245
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Nov 27 2017
STATUS
approved