

A295702


Largest number with exactly n representations as a sum of six positive squares.


1



43, 64, 67, 82, 91, 106, 112, 109, 115, 133, 139, 154, 131, 160, 146, 178, 163, 181, 166, 169, 202, 187, 172, 226, 208, 211, 229, 196, 217, 232, 203, 256, 223, 274, 253
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

It appears that a(36) does not exist.


REFERENCES

E. Grosswald, Representations of Integers as Sums of Squares. SpringerVerlag, New York, 1985, p. 86, Theorem 1.


LINKS

Table of n, a(n) for n=1..35.
D. H. Lehmer, On the Partition of Numbers into Squares, The American Mathematical Monthly, Vol. 55, No. 8, October 1948, pp. 476481.


CROSSREFS

Cf. A000177, A025430, A295494, A295669.
Sequence in context: A317393 A253848 A245742 * A102269 A020349 A050959
Adjacent sequences: A295699 A295700 A295701 * A295703 A295704 A295705


KEYWORD

nonn,more


AUTHOR

Robert Price, Nov 25 2017


STATUS

approved



