login
a(n) is the number of distinct integer-sided triangles inscribed in a circle of radius A009003(n) whose inradius are integers.
1

%I #59 Oct 02 2024 14:35:39

%S 1,1,1,1,1,1,5,1,1,1,1,1,1,1,1,1,1,5,1,1,1,1,1,1,1,12,1,1,1,1,5,1,1,1,

%T 12,1,1,1,1,1,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,10,12,1,1,1,1,1,12,

%U 1,1,1,5,1,1,1,1,1,1,1,1,5,12,1,1,5,1,1

%N a(n) is the number of distinct integer-sided triangles inscribed in a circle of radius A009003(n) whose inradius are integers.

%C For n <= 200, the number of distinct integer-sided triangles inscribed in a circle of radius A009003(n) whose inradius are integers belongs to the set E = {1, 5, 10, 12, 38} where a(168) = 38 (see the table given in reference). Is the set E infinite when n is infinite?

%C a(m) > 1 for m = 7, 18, 26, 31, 35, ... and {A009003(m)} = {25, 50, 65, 75, 85, ...} = {A009177}.

%C We observe geometric properties:

%C If a(n) = 1, the unique triangle is a right triangle.

%C If a(n) = 5, we find two right triangles, two isosceles triangles and another triangle (neither isosceles nor right triangle).

%C If a(n) = 10, we find three right triangles, two isosceles triangles and five other triangles.

%C If a(n) = 12, we find four right triangles and eight other triangles.

%C The area A of a triangle whose sides have lengths u, v, and w is given by Heron's formula: A = sqrt(s*(s-u)*(s-v)*(s-w)), where s = (u+v+w)/2.

%C The inradius r is given by r = A/s and the circumradius is given by R = u*v*w/4A.

%H Felix Huber, <a href="/A295554/a295554_1.pdf">Illustration of the term a(7)</a>

%H Michel Lagneau, <a href="/A295554/a295554.pdf">Triangles</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Circumradius.html">Circumradius</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Inradius.html">Inradius</a>

%e a(7) = 5 because there exists 5 distinct triangles of integer circumradius R = A009003(7)= 25 with the corresponding integer inradius {4, 6, 8, 10, 12}.

%t A009003=Select[Range[200], Length[PowersRepresentations[#^2, 2, 2]] > 1 &];lst= {};Do[R=Part[A009003,n];it=0;Do[s=(a+b+c)/2;If[IntegerQ[s],area2=s (s-a) (s-b) (s-c);If[area2>0&&IntegerQ[Sqrt[area2]]&&R==a*b*c/(4*Sqrt[area2])&&IntegerQ[Sqrt[area2]/s],it=it+1]],{a,2*R},{b,a},{c,b}];AppendTo[lst,it],{n,1,30}];lst

%Y Cf. A009003, A188158, A208984, A210207.

%K nonn

%O 1,7

%A _Michel Lagneau_, Feb 03 2018