login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295336
Numerators of the convergents to sqrt(14)/2 = A294969.
2
1, 2, 13, 15, 43, 58, 391, 449, 1289, 1738, 11717, 13455, 38627, 52082, 351119, 403201, 1157521, 1560722, 10521853, 12082575, 34687003, 46769578, 315304471, 362074049, 1039452569, 1401526618, 9448612277, 10850138895
OFFSET
0,2
COMMENTS
The corresponding denominators are given in A295337.
The recurrence is a(n) = b(n)*a(n-1) + a(n-2), n >= 1, with a(0) = 1, a(-1) = 1, with b(n) from the continued fraction b = {1,repeat(1, 6, 1, 2)}.
The g.f.s G_j(x) = Sum_{n>=0} a(4*n+j)*x^k, for j=1..4 satisfy (arguments are omitted): G_0 = 1 + 2*x*G_3 + x*G_2, G_1= G_0 + 1 + x*G_3, G_2 = 6*G_1 + G_0, G_3 = G_2 + G_1. After solving for the G_j(x), one finds for G(x) = Sum_{n>=0} a(n)*x^n = Sum_{j=1..4} x^j*G_j(x^4) the o.g.f. given in the formula section.
FORMULA
G.f.: (1 + 2*x + 13*x^2 + 15*x^3 + 13*x^4 - 2*x^5 + x^6 - x^7)/(1 - 30*x^4 + x^8).
a(n) = 30*a(n-4) - a(n-8), n >= 8, with inputs a(0)..a(7).
EXAMPLE
The convergents a(n)/A295337(n) begin: 1, 2, 13/7, 15/8, 43/23, 58/31, 391/209, 449/240, 1289/689, 1738/929, 11717/6263, 13455/7192, 38627/20647, 52082/27839, 351119/187681, 403201/215520, 1157521/618721, 1560722/834241, ...
MATHEMATICA
Numerator[Convergents[Sqrt[14]/2, 50]] (* Vaclav Kotesovec, Nov 29 2017 *)
LinearRecurrence[{0, 0, 0, 30, 0, 0, 0, -1}, {1, 2, 13, 15, 43, 58, 391, 449}, 50] (* Harvey P. Dale, Apr 11 2022 *)
CROSSREFS
Sequence in context: A022116 A041201 A042155 * A042253 A041645 A318999
KEYWORD
nonn,frac,cofr,easy
AUTHOR
Wolfdieter Lang, Nov 27 2017
STATUS
approved