OFFSET
0,1
COMMENTS
See A295609 for the corresponding prime numbers.
We can show that this sequence is well defined by using Dirichlet's theorem on arithmetic progressions.
a(n) = 0 iff n is prime.
For any n >= 0, n AND a(n) = 0 (where AND denotes the bitwise AND operator).
If a(n) = x + y with x AND y = 0, then a(n + x) = y.
This sequence has similarities with A007920: here we check n OR k, there we check n + k.
See A295520 for the XOR variant.
For any k > 0, a(2^(6*k)-1) >= 2^(6*k) (hence the sequence is unbounded).
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..8191
Antti Karttunen, Data supplement: n, a(n) computed for n = 0..65537
Rémy Sigrist, Scatterplot of the first 2^17 terms
FORMULA
For any k > 1, a(2*k+1) = a(2*k)-1.
EXAMPLE
For n = 42, 42 OR 0 = 42 is not prime, 42 OR 1 = 43 is prime, hence a(42) = 1.
MATHEMATICA
Table[Block[{k = 0}, While[! PrimeQ@ BitOr[k, n], k++]; k], {n, 0, 84}] (* Michael De Vlieger, Nov 26 2017 *)
PROG
(PARI) avoid(n, i) = if (i, if (n%2, 2*avoid(n\2, i), 2*avoid(n\2, i\2)+(i%2)), 0) \\ (i+1)-th number k such that k AND n = 0
a(n) = for (i=0, oo, my (k=avoid(n, i)); if (isprime(n+k), return (k)))
CROSSREFS
KEYWORD
AUTHOR
Rémy Sigrist, Nov 23 2017
STATUS
approved