Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Oct 13 2023 06:52:42
%S 1,1,1,3,1,1,1,3,4,1,1,3,1,1,1,3,1,4,1,3,1,1,1,3,6,1,4,3,1,1,1,3,1,1,
%T 1,12,1,1,1,3,1,1,1,3,4,1,1,3,8,6,1,3,1,4,1,3,1,1,1,3,1,1,4,3,1,1,1,3,
%U 1,1,1,12,1,1,6,3,1,1,1,3,4,1,1,3,1,1,1,3,1,4,1,3,1,1,1,3,1,8,4,18,1,1,1,3,1
%N Sum of squarefree divisors of the powerful part of n: a(n) = A048250(A057521(n)).
%C The sum of the squarefree divisors of n whose square divides n. - _Amiram Eldar_, Oct 13 2023
%H Antti Karttunen, <a href="/A295295/b295295.txt">Table of n, a(n) for n = 1..16384</a>
%H <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>.
%F Multiplicative with a(p) = 1 and a(p^e) = (p+1) for e > 1.
%F a(n) = A048250(A057521(n)) = A048250(A064549(A003557(n))).
%F a(n) = A048250(n) / A092261(n).
%F a(n) = Sum_{d^2|n} d * mu(d)^2. - _Wesley Ivan Hurt_, Feb 13 2022
%F From _Amiram Eldar_, Sep 18 2023: (Start)
%F Dirichlet g.f.: zeta(s) * zeta(2*s-1) / zeta(4*s-2).
%F Sum_{k=1..n} a(k) ~ (3*n/Pi^2) * (log(n) + 3*gamma - 1 - 4*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). (End)
%F a(n) = A048250(n) - A344137(n). - _Amiram Eldar_, Oct 13 2023
%t Array[DivisorSum[#/Denominator[#/Apply[Times, FactorInteger[#][[All, 1]]]^2], # &, SquareFreeQ] &, 105] (* _Michael De Vlieger_, Nov 26 2017, after _Jean-François Alcover_ at A057521 *)
%t f[p_, e_] := If[e == 1, 1, p+1] ; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 18 2023 *)
%o (Scheme, with memoization-macro definec)
%o (definec (A295295 n) (if (= 1 n) n (let ((p (A020639 n)) (e (A067029 n))) (* (if (= 1 e) 1 (+ 1 p)) (A295295 (A028234 n))))))
%o (PARI) a(n) = my(f=factor(n)); for (i=1, #f~, if (f[i,2]==1, f[i,1]=1)); sumdiv(factorback(f), d, d*issquarefree(d)); \\ _Michel Marcus_, Jan 29 2021
%Y Cf. A000203, A003557, A048250, A057521, A064549, A092261, A295294, A344137.
%Y Cf. A001620, A013661, A073002.
%K nonn,easy,mult
%O 1,4
%A _Antti Karttunen_, Nov 25 2017