OFFSET
1,1
COMMENTS
Conjecture: a(n) is always integral for every n = 1,2,3,.... Moreover, for any odd prime p we have a(p) == 24 + 10*Leg(-1,p) - 18*Leg(3,p) - 9*Leg(p,3) (mod p^2), where Leg(m,p) denotes the Legendre symbol (m/p).
We also observe that Sum_{k=0}^{p-1}A295112(k)^2 == 2 (mod p) for any prime p > 3.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..200
Zhi-Wei Sun, On Motzkin numbers and central trinomial coefficients, arXiv:1801.08905 [math.CO], 2018. (See Conjecture 5.1.)
EXAMPLE
MATHEMATICA
W[n_]:=W[n]=Sum[Binomial[n, 2k]Binomial[2k, k]/(2k-1), {k, 0, n/2}];
a[n_]:=a[n]=1/n*Sum[(8k+9)W[k]^2, {k, 0, n-1}];
Table[a[n], {n, 1, 25}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Nov 14 2017
STATUS
approved