login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295113
a(n) = (1/n)*Sum_{k=0..n-1} (8*k + 9)*A295112(k)^2.
4
9, 13, 17, 219, 1561, 8169, 39321, 191389, 985201, 5430789, 31943961, 198471183, 1288665177, 8665236121, 59922226809, 423935337411, 3056528058577, 22392246851973, 166311049602681, 1250027314777795, 9494339129623329, 72784922204637153, 562626619763553217, 4381665416129531961, 34354964747652467697
OFFSET
1,1
COMMENTS
Conjecture: a(n) is always integral for every n = 1,2,3,.... Moreover, for any odd prime p we have a(p) == 24 + 10*Leg(-1,p) - 18*Leg(3,p) - 9*Leg(p,3) (mod p^2), where Leg(m,p) denotes the Legendre symbol (m/p).
We also observe that Sum_{k=0}^{p-1}A295112(k)^2 == 2 (mod p) for any prime p > 3.
LINKS
Zhi-Wei Sun, On Motzkin numbers and central trinomial coefficients, arXiv:1801.08905 [math.CO], 2018. (See Conjecture 5.1.)
EXAMPLE
a(2) = 13 since (1/2)*Sum_{k=0..1} (8k + 9)*A295112(k)^2 = (1/2)*((8*0 + 9)*A295112(0)^2 + (8 + 9)*A295112(1)^2) = (1/2)*(9*(-1)^2 + 17*(-1)^2) = 13.
MATHEMATICA
W[n_]:=W[n]=Sum[Binomial[n, 2k]Binomial[2k, k]/(2k-1), {k, 0, n/2}];
a[n_]:=a[n]=1/n*Sum[(8k+9)W[k]^2, {k, 0, n-1}];
Table[a[n], {n, 1, 25}]
CROSSREFS
Sequence in context: A188220 A211429 A103152 * A263941 A090415 A026283
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Nov 14 2017
STATUS
approved