The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295113 a(n) = (1/n)*Sum_{k=0..n-1} (8*k + 9)*A295112(k)^2. 4
 9, 13, 17, 219, 1561, 8169, 39321, 191389, 985201, 5430789, 31943961, 198471183, 1288665177, 8665236121, 59922226809, 423935337411, 3056528058577, 22392246851973, 166311049602681, 1250027314777795, 9494339129623329, 72784922204637153, 562626619763553217, 4381665416129531961, 34354964747652467697 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Conjecture: a(n) is always integral for every n = 1,2,3,.... Moreover, for any odd prime p we have a(p) == 24 + 10*Leg(-1,p) - 18*Leg(3,p) - 9*Leg(p,3) (mod p^2), where Leg(m,p) denotes the Legendre symbol (m/p). We also observe that Sum_{k=0}^{p-1}A295112(k)^2 == 2 (mod p) for any prime p > 3. LINKS Zhi-Wei Sun, Table of n, a(n) for n = 1..200 Zhi-Wei Sun, On Motzkin numbers and central trinomial coefficients, arXiv:1801.08905 [math.CO], 2018. (See Conjecture 5.1.) EXAMPLE a(2) = 13 since (1/2)*Sum_{k=0..1} (8k + 9)*A295112(k)^2 = (1/2)*((8*0 + 9)*A295112(0)^2 + (8 + 9)*A295112(1)^2) = (1/2)*(9*(-1)^2 + 17*(-1)^2) = 13. MATHEMATICA W[n_]:=W[n]=Sum[Binomial[n, 2k]Binomial[2k, k]/(2k-1), {k, 0, n/2}]; a[n_]:=a[n]=1/n*Sum[(8k+9)W[k]^2, {k, 0, n-1}]; Table[a[n], {n, 1, 25}] CROSSREFS Cf. A001006, A295112. Sequence in context: A188220 A211429 A103152 * A263941 A090415 A026283 Adjacent sequences:  A295110 A295111 A295112 * A295114 A295115 A295116 KEYWORD nonn AUTHOR Zhi-Wei Sun, Nov 14 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 08:30 EDT 2022. Contains 353785 sequences. (Running on oeis4.)