|
|
A295111
|
|
Primes p such that 2^p - p is also a prime.
|
|
0
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(6) > 1061095.
Intersection of A000040 and A048744.
Since numbers other than 3 that are congruent to 3 mod 6 are composite, for n > 2, a(n) is congruent to 1 mod 6 (see comments by Iain Fox in A048744).
|
|
LINKS
|
Table of n, a(n) for n=1..5.
|
|
EXAMPLE
|
p=13, 2^13 - 13 = 8179 is prime.
|
|
PROG
|
(PARI) lista(nn) = forprime(p=2, nn, if(ispseudoprime(2^p - p), print1(p, ", ")))
|
|
CROSSREFS
|
Cf. A000325, A081296, A048744, A057663, A057673.
Sequence in context: A234366 A084958 A249573 * A229117 A295722 A037392
Adjacent sequences: A295108 A295109 A295110 * A295112 A295113 A295114
|
|
KEYWORD
|
hard,more,nonn
|
|
AUTHOR
|
Iain Fox, Nov 14 2017
|
|
STATUS
|
approved
|
|
|
|