login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A294839 Expansion of Product_{k>=1} (1 + x^(2*k-1))^(k*(3*k-1)/2)*(1 + x^(2*k))^(k*(3*k+1)/2). 3
1, 1, 2, 7, 13, 30, 61, 125, 250, 494, 960, 1835, 3487, 6520, 12105, 22239, 40515, 73207, 131315, 233831, 413625, 727100, 1270405, 2207243, 3814155, 6557164, 11217391, 19099932, 32375026, 54640509, 91836697, 153739008, 256379360, 425964293, 705197513, 1163452547, 1913096832, 3135609791 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Weigh transform of the generalized pentagonal numbers (A001318).

LINKS

Table of n, a(n) for n=0..37.

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

N. J. A. Sloane, Transforms

Eric Weisstein's World of Mathematics, Pentagonal Number

FORMULA

G.f.: Product_{k>=1} (1 + x^k)^A001318(k).

a(n) ~ exp(Pi*sqrt(2) * 7^(1/4) * n^(3/4) / (3*5^(1/4)) + 9*Zeta(3) * sqrt(5*n/7) / (4*Pi^2) + (7*Pi^6 - 2430*Zeta(3)^2) * (5/7)^(1/4) * n^(1/4) / (336 * sqrt(2) * Pi^5) + 15*Zeta(3)*(3240*Zeta(3)^2 - 7*Pi^6) / (3136*Pi^8)) * 7^(1/8) / (2^(9/4) * 5^(1/8) * n^(5/8)). - Vaclav Kotesovec, Nov 10 2017

MATHEMATICA

nmax = 37; CoefficientList[Series[Product[(1 + x^(2 k - 1))^(k (3 k - 1)/2) (1 + x^(2 k))^(k (3 k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]

a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d Ceiling[d/2] Ceiling[(3 d + 1)/2]/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 37}]

CROSSREFS

Cf. A001318, A028377, A294102, A294840, A294841.

Sequence in context: A215206 A298215 A127396 * A231478 A320680 A079119

Adjacent sequences:  A294836 A294837 A294838 * A294840 A294841 A294842

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Nov 09 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 17:28 EST 2021. Contains 349557 sequences. (Running on oeis4.)