Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Nov 23 2024 19:35:50
%S 1,11,83,410,16799,495151,8516747,55850623,309309419,1088610631,
%T 6561497681,777210281963,12475578306953,287734917200239,
%U 10671842976127147,844855135994501953,846430303832665873,75457260356268267017,3551759427031132995079,711302288219532928235,712163917143684270659
%N Numerators of the partial sums of the reciprocals of the numbers (k + 1)*(5*k + 4) = 2*A005476(k+1), for k >= 0.
%C The corresponding denominators are given in A294832.
%C For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [5,4].
%C The limit of the series is V(5,4) = lim_{n -> oo} V(5,4;n) = ((5/2)*log(5) + (2*phi - 1)*(log(phi) - (Pi/5)*sqrt(3 + 4*phi)))/2, with the golden section phi:= (1 + sqrt(5))/2 = A001622. The value is 0.3877929018046... given in A294833.
%C In the Koecher reference v_5(4) = (1/5)*V(5,4) = 0.07755858036... given there by (1/4)*log(5) + (1/(2*sqrt(5)))*log((1 + sqrt(5))/2) - (Pi/10)*sqrt((5 + 2*sqrt(5))/5).
%D Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189-193. For v_5(4) see p. 192.
%H G. C. Greubel, <a href="/A294831/b294831.txt">Table of n, a(n) for n = 0..600</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DigammaFunction.html">Digamma Function</a>
%F a(n) = numerator(V(5,4;n)) with V(5,4;n) = Sum_{k=0..n} 1/((k + 1)*(5*k + 4)) = Sum_{k=0..n} 1/(2*A005476(k+1)) = Sum_{k=0..n} (1/(k + 4/5) - 1/(k+1)) = -Psi(4/5) + Psi(n+9/5) - (gamma + Psi(n+2)) with the digamma function Psi and the Euler-Mascheroni constant gamma = -Psi(1) from A001620.
%e The rationals V(5,4;n), n >= 0, begin:1/4, 11/36, 83/252, 410/1197, 16799/47880, 495151/1388520, 8516747/23604840, 55850623/153431460, 309309419/843873030, 1088610631/2953555605, 6561497681/17721333630, 777210281963/2091117368340, 12475578306953/33457877893440, ...
%e V(5,4;10^6) = 0.3877927018 (Maple 10 digits) to be compared with 0.3877929018 obtained from A294833 with 10 digits.
%t Table[Numerator[Sum[1/((k + 1)*(5*k + 4)), {k, 0, n}]], {n, 0, 50}] (* _G. C. Greubel_, Aug 30 2018 *)
%o (PARI) a(n) = numerator(sum(k=0, n, 1/((k + 1)*(5*k + 4)))); \\ _Michel Marcus_, Nov 19 2017
%o (Magma) [Numerator((&+[1/((k + 1)*(5*k + 4)): k in [0..n]])): n in [0..50]]; // _G. C. Greubel_, Aug 30 2018
%Y Cf. A001622, 2*A005476, A294512, A294828/A294829 (V(5,3;n)), A294832, A294833.
%K nonn,frac,easy
%O 0,2
%A _Wolfdieter Lang_, Nov 18 2017