OFFSET
0,3
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
D. Callan, T. Mansour, Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns, arXiv:1705.00933 [math.CO] (2017), Table 1 No 93.
Index entries for linear recurrences with constant coefficients, signature (11,-51,129,-192,168,-80,16).
FORMULA
G.f.: (1 - 10*x + 42*x^2 - 94*x^3 + 120*x^4 - 86*x^5 + 31*x^6 - 3*x^7) / ((1 - x)^3*(1 - 2*x)^4).
From Colin Barker, Nov 09 2017: (Start)
a(n) = (1/32)*(256 - 115*2^(1+n) + (80+79*2^n)*n - 2*(5*2^n-8)*n^2 + 2^n*n^3) for n>0.
a(n) = 11*a(n-1) - 51*a(n-2) + 129*a(n-3) - 192*a(n-4) + 168*a(n-5) - 80*a(n-6) + 16*a(n-7) for n>7.
(End)
MAPLE
(1 -10*x +42*x^2 -94*x^3 +120*x^4 -86*x^5 +31*x^6 -3*x^7)/((1 -x)^3*(1 -2*x)^4) ;
taylor(%, x=0, 40) ;
gfun[seriestolist](%) ;
PROG
(PARI) Vec((1 - 10*x + 42*x^2 - 94*x^3 + 120*x^4 - 86*x^5 + 31*x^6 - 3*x^7) / ((1 - x)^3*(1 - 2*x)^4) + O(x^30)) \\ Colin Barker, Nov 09 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Nov 09 2017
STATUS
approved