login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294802
Number of permutations of [n] avoiding {3412, 3421, 1324}.
1
1, 1, 2, 6, 21, 73, 240, 744, 2192, 6192, 16896, 44800, 115968, 294144, 733184, 1800192, 4362240, 10448896, 24772608, 58195968, 135593984, 313589760, 720371712, 1644691456, 3733979136, 8433696768, 18958254080, 42429579264, 94573166592, 210000412672, 464661774336, 1024752353280, 2252978782208
OFFSET
0,3
LINKS
D. Callan and T. Mansour, Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns, arXiv:1705.00933 [math.CO] (2017), Table 1 No 88.
FORMULA
G.f.: (1 - x)^2*(1 - 5*x + 7*x^2 + x^3) / (1 - 2*x)^4.
From Colin Barker, Nov 09 2017: (Start)
a(n) = 2^(n-6)*(36 - 8*n + n^2 + n^3) for n>1.
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n>5.
(End)
MAPLE
(1 -x)^2*(1 -5*x +7*x^2 +x^3)/(1 -2*x)^4 ;
taylor(%, x=0, 40) ;
gfun[seriestolist](%) ;
PROG
(PARI) Vec((1 - x)^2*(1 - 5*x + 7*x^2 + x^3) / (1 - 2*x)^4 + O(x^30)) \\ Colin Barker, Nov 09 2017
CROSSREFS
Sequence in context: A116768 A294694 A116740 * A116788 A294695 A116778
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Nov 09 2017
STATUS
approved