login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294677
G.f.: 1 + Sum_{n=-oo..+oo, n<>0} (x - x^n)^n / (1 - (x - x^n)^n).
1
1, -1, 2, -3, 7, -11, 17, -21, 35, -67, 125, -179, 246, -384, 715, -1199, 1871, -2850, 4593, -7589, 12811, -20366, 31545, -50483, 84597, -138964, 222534, -352910, 569680, -931694, 1523165, -2451150, 3924137, -6331780, 10329289, -16804843, 27109912, -43594466, 70485938, -114450985, 185713588, -300089184, 484106880, -782672321, 1269075821, -2056723036, 3325362211, -5371243069, 8688055226
OFFSET
0,3
COMMENTS
Compare g.f. to: Sum_{n=-oo..+oo} (x - x^(n+1))^n = 0.
Compare g.f. to: Sum_{n=-oo..+oo, n<>0} x^n/(1 - x^n) = 0, ignoring constant terms.
Limit a(n+1)/a(n) = -(sqrt(5) + 1)/2.
LINKS
FORMULA
a(n) ~ (-1)^n * (1 + sqrt(5))^(n+1) / 2^(n+2). - Vaclav Kotesovec, Nov 08 2017
EXAMPLE
G.f.: A(x) = 1 - x + 2*x^2 - 3*x^3 + 7*x^4 - 11*x^5 + 17*x^6 - 21*x^7 + 35*x^8 - 67*x^9 + 125*x^10 - 179*x^11 + 246*x^12 - 384*x^13 + 715*x^14 - 1199*x^15 + 1871*x^16 - 2850*x^17 + 4593*x^18 - 7589*x^19 + 12811*x^20 - 20366*x^21 + 31545*x^22 - 50483*x^23 + 84597*x^24 - 138964*x^25 +...
PROG
(PARI) {a(n) = my(A); A = sum(m=-n-1, n+1, if(m==0, 1, (x-x^m)^m/(1 - (x-x^m +x*O(x^n))^m ))); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Cf. A290003.
Sequence in context: A375818 A155141 A127944 * A274161 A045324 A140460
KEYWORD
sign
AUTHOR
Paul D. Hanna, Nov 07 2017
STATUS
approved