login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294667
Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(3*k+1)/2).
6
1, 2, 10, 33, 110, 332, 997, 2829, 7889, 21299, 56400, 146028, 371681, 929498, 2290296, 5562369, 13336036, 31583177, 73957845, 171342592, 393018517, 893000610, 2011039286, 4490680381, 9947577333, 21867539862, 47721817473, 103420870299, 222641160569
OFFSET
0,2
LINKS
FORMULA
a(n) ~ exp(Pi * 2^(7/4) * n^(3/4) / (3*5^(1/4)) + Zeta(3) * sqrt(5*n) / (sqrt(2) * Pi^2) - 5^(5/4) * Zeta(3)^2 * n^(1/4) / (2^(7/4) * Pi^5) + (25 * Zeta(3)^3) / (6*Pi^8) - 3*Zeta(3) / (8*Pi^2) + 1/24) * Pi^(1/24) / (sqrt(A) * 2^(157/96) * 5^(13/96) * n^(61/96)), where A is the Glaisher-Kinkelin constant A074962.
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[1/(1-x^k)^(k*(3*k+1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Sequence in context: A080668 A062453 A036369 * A240407 A372190 A043004
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 06 2017
STATUS
approved