login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294355
E.g.f.: exp( Sum_{n>=1} phi(n) * sigma(n^n) * x^n/n ).
1
1, 1, 8, 182, 6962, 419242, 36634192, 4488812596, 722684103164, 148732979255324, 38081859158891744, 11886289198519022344, 4436616366171778495192, 1951865016371020657730488, 999444614538375532106921408, 589291073127565867170680837168, 396337742242710677353781867268368, 301596359950397359016053774993717264, 257797318556710190428189878485023244416
OFFSET
0,3
COMMENTS
Note that exp( Sum_{n>=1} phi(K) * sigma(K^n) * x^n/n ) is an integer series for any fixed positive integer K ; though similar, the generating function for this sequence does not yield an integer series.
LINKS
EXAMPLE
E.g.f.: A(x) = 1 + x + 8*x^2/2! + 182*x^3/3! + 6962*x^4/4! + 419242*x^5/5! + 36634192*x^6/6! + 4488812596*x^7/7! + 722684103164*x^8/8! + 148732979255324*x^9/9! + 38081859158891744*x^10/10! +...
such that
log(A(x)) = x + phi(2)*sigma(2^2)*x^2/2 + phi(3)*sigma(3^3)*x^3/3 + phi(4)*sigma(4^4)*x^4/4 + phi(5)*sigma(5^5)*x^5/5 + phi(6)*sigma(6^6)*x^6/6 + phi(7)*sigma(7^7)*x^7/7 +...+ phi(n)*sigma(n^n)*x^n/n +...
Explicitly,
log(A(x)) = x + 7*x^2/2 + 80*x^3/3 + 1022*x^4/4 + 15624*x^5/5 + 277622*x^6/6 + 5764800*x^7/7 + 134217724*x^8/8 + 3486784398*x^9/9 + 99951169828*x^10/10 +...
PROG
(PARI) {a(n) = my(A); A = exp(sum(m=1, n+1, eulerphi(m)*sigma(m^m)*x^m/m) +x*O(x^n)); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A000010 (phi), A000203 (sigma).
Sequence in context: A332118 A261825 A203359 * A180607 A024286 A231795
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 29 2017
STATUS
approved