login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Sum of the areas of the distinct rectangles (and the areas of the squares on their sides) with positive integer sides such that L + W = n, W < L.
1

%I #49 Oct 14 2024 11:21:50

%S 0,0,12,23,70,105,210,282,468,590,880,1065,1482,1743,2310,2660,3400,

%T 3852,4788,5355,6510,7205,8602,9438,11100,12090,14040,15197,17458,

%U 18795,21390,22920,25872,27608,30940,32895,36630,38817,42978,45410,50020,52710,57792

%N Sum of the areas of the distinct rectangles (and the areas of the squares on their sides) with positive integer sides such that L + W = n, W < L.

%H Sela Fried, <a href="/A294139/a294139.pdf">On the ordinary generating function of A294139 and A307684</a>, 2024.

%H Sela Fried, <a href="https://arxiv.org/abs/2410.07237">Proofs of some Conjectures from the OEIS</a>, arXiv:2410.07237 [math.NT], 2024. See p. 10.

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-3,-3,3,1,-1).

%F a(n) = Sum_{i=1..floor((n-1)/2)} 2*i^2 + 2*(n-i)^2 + i*(n-i).

%F Conjectures from _Colin Barker_, Nov 01 2017: (Start)

%F G.f.: x^3*(12 + 11*x + 11*x^2 + 2*x^3) / ((1 - x)^4*(1 + x)^3).

%F a(n) = n*(6*n - 1)*(n - 2) / 8 for n even.

%F a(n) = n*(3*n - 1)*(n - 1) / 4 for n odd.

%F a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n > 7. (End)

%F a(n) = n*(4-21*n+12*n^2-5*n*(-1)^n)/16. - _Wesley Ivan Hurt_, Dec 02 2023

%F The first three conjectures of Barker are true. See links. - _Sela Fried_, Aug 11 2024.

%t Table[ Sum[2 i^2 + 2 (n - i)^2 + i (n - i), {i, Floor[(n-1)/2]}], {n, 40}]

%o (Magma) [n*(4-21*n+12*n^2-5*n*(-1)^n)/16 : n in [1..60]]; // _Wesley Ivan Hurt_, Dec 02 2023

%Y Cf. A294473.

%K nonn,easy

%O 1,3

%A _Wesley Ivan Hurt_, Oct 31 2017

%E Signature for linear recurrence taken from first formula in formula section.