login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294139
Sum of the areas of the distinct rectangles (and the areas of the squares on their sides) with positive integer sides such that L + W = n, W < L.
1
0, 0, 12, 23, 70, 105, 210, 282, 468, 590, 880, 1065, 1482, 1743, 2310, 2660, 3400, 3852, 4788, 5355, 6510, 7205, 8602, 9438, 11100, 12090, 14040, 15197, 17458, 18795, 21390, 22920, 25872, 27608, 30940, 32895, 36630, 38817, 42978, 45410, 50020, 52710, 57792
OFFSET
1,3
FORMULA
a(n) = Sum_{i=1..floor((n-1)/2)} 2*i^2 + 2*(n-i)^2 + i*(n-i).
Conjectures from Colin Barker, Nov 01 2017: (Start)
G.f.: x^3*(12 + 11*x + 11*x^2 + 2*x^3) / ((1 - x)^4*(1 + x)^3).
a(n) = n*(6*n - 1)*(n - 2) / 8 for n even.
a(n) = n*(3*n - 1)*(n - 1) / 4 for n odd.
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n > 7. (End)
a(n) = n*(4-21*n+12*n^2-5*n*(-1)^n)/16. - Wesley Ivan Hurt, Dec 02 2023
The first three conjectures of Barker are true. See links. - Sela Fried, Aug 11 2024.
MATHEMATICA
Table[ Sum[2 i^2 + 2 (n - i)^2 + i (n - i), {i, Floor[(n-1)/2]}], {n, 40}]
PROG
(Magma) [n*(4-21*n+12*n^2-5*n*(-1)^n)/16 : n in [1..60]]; // Wesley Ivan Hurt, Dec 02 2023
CROSSREFS
Cf. A294473.
Sequence in context: A190426 A207539 A083683 * A255766 A333933 A015447
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Oct 31 2017
EXTENSIONS
Signature for linear recurrence taken from first formula in formula section.
STATUS
approved