login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294074
Primes of the form p*2^k + 1, where p is an odd prime and k is odd.
1
7, 11, 23, 41, 47, 59, 83, 89, 97, 107, 137, 167, 179, 227, 233, 263, 347, 353, 359, 383, 467, 479, 503, 563, 569, 587, 641, 719, 809, 839, 857, 863, 887, 929, 983, 1019, 1049, 1097, 1187, 1193, 1283, 1307, 1319, 1367, 1409, 1433, 1439, 1487, 1523, 1619, 1697
OFFSET
1,1
COMMENTS
I conjecture that a number of the form p*2^k + 1 (with odd prime p and odd k) belongs to this sequence if and only if p*2^k + 1 divides (p + 2)^(p*2^k) - 1.
This conjecture has been verified for n up to 10^10.
LINKS
MAPLE
filter:= proc(n) local k; if not isprime(n) then return false fi; k:= padic:-ordp(n-1, 2); k::odd and isprime((n-1)/2^k) end proc:
select(filter, [seq(n, n=3..2000, 2)]); # Robert Israel, Mar 13 2018
MATHEMATICA
lst = {}; Do[v = IntegerExponent[m - 1, 2]; If[OddQ[v], If[PrimeQ[(m - 1)/2^v] && PrimeQ[m], AppendTo[lst, m]]], {m, 3, 1697, 2}]; lst
PROG
(PARI) isok(p) = isprime(p) && (pp=p-1) && (v=valuation(pp, 2)) && (v%2) && isprime(pp/2^v); \\ Michel Marcus, Feb 09 2018
CROSSREFS
Subsequence of A058500.
Sequence in context: A239733 A265768 A210001 * A228227 A107133 A079138
KEYWORD
nonn
AUTHOR
STATUS
approved