login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079138
Primes of the form k^2 + 7.
3
7, 11, 23, 43, 71, 107, 151, 263, 331, 491, 683, 907, 1031, 1163, 1303, 1451, 1607, 2311, 2711, 3371, 3607, 3851, 4363, 5483, 5783, 6091, 10007, 11243, 12107, 13003, 13463, 13931, 14407, 14891, 15383, 17431, 18503, 19051, 20743, 21323, 21911
OFFSET
1,1
COMMENTS
The sum of the reciprocals converges to 0.350314... Are there infinitely many primes of this form?
LINKS
MATHEMATICA
Intersection[Table[n^2+7, {n, 0, 10^2}], Prime[Range[9*10^3]]] ...or... For[i=7, i<=7, a={}; Do[If[PrimeQ[n^2+i], AppendTo[a, n^2+i]], {n, 0, 100}]; Print["n^2+", i, ", ", a]; i++ ] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
Select[Table[n^2+7, {n, 0, 70000}], PrimeQ] (* Vincenzo Librandi, Nov 30 2011 *)
PROG
(PARI) nsqpm(n) = {sr=0; forstep(x=0, n, 2, y = x*x+7; if(isprime(y), print1(y" "); sr+=1.0/y; ); ); print(); print(sr); } \\ Primes of the form n^2 + 7 and the sum of the reciprocals.
(Magma) [a: n in [0..700] | IsPrime(a) where a is n^2+7]; // Vincenzo Librandi, Nov 30 2011
CROSSREFS
Sequence in context: A294074 A228227 A107133 * A163848 A111671 A213895
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Dec 26 2002
STATUS
approved