login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Row 4 in rectangular array A292929.
5

%I #7 Nov 04 2017 08:52:32

%S 2,-4,8,-12,24,-40,38,-96,138,-134,316,-384,384,-790,982,-1168,1976,

%T -2400,2904,-4464,5632,-6956,9904,-12320,15186,-20938,26000,-32008,

%U 42560,-52278,64458,-83736,102294,-125428,159288,-193908,236632,-295612,358170,-434364,535958,-646032,778504,-950552,1139784,-1367002,1654268,-1972508,2353214,-2825722,3355344,-3983820,4749672,-5614558,6634830

%N Row 4 in rectangular array A292929.

%H Paul D. Hanna, <a href="/A294067/b294067.txt">Table of n, a(n) for n = 0..380</a>

%e G.f.: A(q) = 2 - 4*q + 8*q^2 - 12*q^3 + 24*q^4 - 40*q^5 + 38*q^6 - 96*q^7 + 138*q^8 - 134*q^9 + 316*q^10 - 384*q^11 + 384*q^12 - 790*q^13 + 982*q^14 - 1168*q^15 + 1976*q^16 - 2400*q^17 + 2904*q^18 - 4464*q^19 + 5632*q^20 +...

%t nmax = 55; kmax = Ceiling[Sqrt[nmax]]+1;

%t Q[q_] := Sum[(x - q^k)^k, {k, -kmax, kmax}];

%t S[q_] := Sqrt[Q[q]/Q[-q]];

%t row[n_] := (1/q^n)*SeriesCoefficient[Sqrt[Q[q]/Q[-q]], {x, 0, n} ] + O[q]^nmax // CoefficientList[#, q] &;

%t row[4] (* _Jean-François Alcover_, Nov 04 2017 *)

%Y Cf. A292929, A293132, A294065, A294066.

%K sign

%O 0,1

%A _Paul D. Hanna_, Oct 23 2017