login
A294009
Number of multisets of exactly seven nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
2
1, 2, 7, 22, 73, 240, 818, 2824, 9995, 36210, 134397, 511802, 1999360, 8023808, 33066865, 140066840, 609466485, 2725084766, 12510393090, 58957378290, 284932585092, 1411369884766, 7157365741706, 37132616218394, 196866561660145, 1065754768886044
OFFSET
7,2
LINKS
FORMULA
a(n) = [x^n y^7] Product_{j>=1} 1/(1-y*x^j)^A000085(j).
MAPLE
g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end:
b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n,
add(binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 8)
end:
a:= n-> coeff(b(n$2), x, 7):
seq(a(n), n=7..40);
CROSSREFS
Column k=7 of A293808.
Cf. A000085.
Sequence in context: A322573 A294007 A294008 * A294010 A294011 A294012
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 21 2017
STATUS
approved