login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293907
Numbers n for which 10^n mod n = 2^k for some positive integer k.
1
6, 12, 14, 24, 28, 34, 46, 48, 52, 56, 68, 72, 84, 92, 96, 112, 117, 123, 126, 136, 144, 168, 186, 192, 204, 208, 224, 228, 249, 252, 266, 272, 288, 328, 336, 356, 372, 384, 392, 408, 416, 448, 464, 488, 498, 504, 516
OFFSET
1,1
COMMENTS
Odd numbers in this sequence: 117, 123, 249, 747, 4043, 5031, 11573, 12129, 14481, 29489, 34719, 35549, 84123, 124631, 173329, 217391, 266799, 458523, 472173, 490561, 551759, 658499, 675431, 721773, 800397, 1375569, 1917843, 2300079, 3194787, 3394893, 4236747, 5031039, 5043957, 5169333, ....
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
For n = 6, 10^6 mod 6 = 4 = 2^2;
For n = 14, 10^14 mod 14 = 2 = 2^1;
For n = 84, 10^84 mod 84 = 64 = 2^6;
For n = 272, 10^272 mod 272 = 256 = 2^8.
MATHEMATICA
pm2Q[n_]:=Module[{c=PowerMod[10, n, n]}, c>1&&IntegerQ[Log2[c]]]; Select[ Range[600], pm2Q] (* Harvey P. Dale, Mar 29 2023 *)
PROG
(PARI) is(n)=my(k=lift(Mod(10, n)^n)); k>1 && k>>valuation(k, 2)==1 \\ Charles R Greathouse IV, Oct 19 2017
CROSSREFS
Cf. A056969 (10^n modulo n).
Sequence in context: A079946 A315614 A118586 * A259397 A183029 A113791
KEYWORD
nonn
AUTHOR
Björn Ch. Buchli, Oct 19 2017
EXTENSIONS
More terms from Michel Marcus, Oct 19 2017
STATUS
approved