login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A293752 Numbers k such that c(k,0) = c(k,1), where c(k,d) = number of d's in the first k digits of the base-2 expansion of tau (the golden ratio, (1+sqrt(5))/2). 4
4, 142, 144, 156, 158, 160, 192, 220, 222, 226, 228, 230, 276, 278, 310, 312, 314, 334, 340, 358, 360, 374, 376, 380, 390, 394, 628, 662, 664, 672, 678, 680, 682, 684, 686, 692, 694, 700, 718, 720, 722, 740, 1666, 1670, 1674, 1688, 1690, 1692, 1698, 1724 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

This sequence together with A293754 and A293755 partition the positive integers.

LINKS

Table of n, a(n) for n=1..50.

EXAMPLE

In base 2, tau = 1.10011110001101110111100..., so that the initial segment

1.100, of length 4 is the first segment to have the same number of 0's and 1's, so that a(1) = 4.

MATHEMATICA

z = 300; u = N[GoldenRatio, z]; d = RealDigits[u, 2][[1]];

t[n_] := Take[d, n]; c[0, n_] := Count[t[n], 0]; c[1, n_] := Count[t[n], 1];

Table[{n, c[0, n], c[1, n]}, {n, 1, 100}]

u = Select[Range[z], c[0, #] == c[1, #] &] (* A293752 *)

u/2 (* A293753 *)

Select[Range[z], c[0, #] < c[1, #] &] (* A293754 *)

Select[Range[z], c[0, #] > c[1, #] &] (* A293755 *)

CROSSREFS

Cf. A068432, A293753, A293754, A293755.

Sequence in context: A299722 A210831 A247483 * A299833 A231949 A239248

Adjacent sequences: A293749 A293750 A293751 * A293753 A293754 A293755

KEYWORD

nonn,easy,base

AUTHOR

Clark Kimberling, Oct 18 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 30 07:38 EDT 2023. Contains 361606 sequences. (Running on oeis4.)