|
|
A293752
|
|
Numbers k such that c(k,0) = c(k,1), where c(k,d) = number of d's in the first k digits of the base-2 expansion of tau (the golden ratio, (1+sqrt(5))/2).
|
|
4
|
|
|
4, 142, 144, 156, 158, 160, 192, 220, 222, 226, 228, 230, 276, 278, 310, 312, 314, 334, 340, 358, 360, 374, 376, 380, 390, 394, 628, 662, 664, 672, 678, 680, 682, 684, 686, 692, 694, 700, 718, 720, 722, 740, 1666, 1670, 1674, 1688, 1690, 1692, 1698, 1724
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This sequence together with A293754 and A293755 partition the positive integers.
|
|
LINKS
|
|
|
EXAMPLE
|
In base 2, tau = 1.10011110001101110111100..., so that the initial segment
1.100, of length 4 is the first segment to have the same number of 0's and 1's, so that a(1) = 4.
|
|
MATHEMATICA
|
z = 300; u = N[GoldenRatio, z]; d = RealDigits[u, 2][[1]];
t[n_] := Take[d, n]; c[0, n_] := Count[t[n], 0]; c[1, n_] := Count[t[n], 1];
Table[{n, c[0, n], c[1, n]}, {n, 1, 100}]
u = Select[Range[z], c[0, #] == c[1, #] &] (* A293752 *)
Select[Range[z], c[0, #] < c[1, #] &] (* A293754 *)
Select[Range[z], c[0, #] > c[1, #] &] (* A293755 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|