login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that phi(sigma(n))/n > phi(sigma(m))/m for all m < n, where sigma is the sum of divisors function (A000203) and phi is Euler's totient function (A000010).
0

%I #9 Oct 21 2017 21:52:26

%S 1,4,16,36,144,576,3600,14400,32400,129600,291600,1166400,8643600,

%T 34574400,77792400,84272400,311169600,337089600,700131600,2800526400,

%U 179233689600,202338032400,809352129600

%N Numbers n such that phi(sigma(n))/n > phi(sigma(m))/m for all m < n, where sigma is the sum of divisors function (A000203) and phi is Euler's totient function (A000010).

%C Makowski and Schinzel proved that lim sup phi(sigma(n))/n = oo, thus this sequence is infinite.

%H Andrzej Makowski and Andrzej Schinzel, <a href="http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.bwnjournal-article-cmv13i1n14/c/cm13114.pdf">On the functions phi(n) and sigma(n)</a>, Colloquium Mathematicae, Vol. 13, No. 1 (1964), pp. 95-99.

%t a={}; rm=0; Do[r = EulerPhi[DivisorSigma[1,n]]/n; If[r>rm, rm=r; AppendTo[a,n]], {n,1,100000}]; a

%o (PARI) lista(nn) = {my(rmax = 0); for (n=1, nn, if ((r=eulerphi(sigma(n))/n) > rmax, rmax = r; print1(n, ", ")););} \\ _Michel Marcus_, Oct 18 2017

%Y Cf. A000010, A000203, A062401.

%K nonn,more

%O 1,2

%A _Amiram Eldar_, Oct 15 2017

%E a(21)-a(23) from _Robert G. Wilson v_, Oct 16 2017