login
A293658
Base-5 circular primes that are not base-5 repunits.
7
7, 11, 13, 17, 19, 23, 167, 211, 239, 283, 359, 431, 547, 571, 1069, 1249, 1733, 2221, 2417, 2713, 2749, 3049, 3109, 3121
OFFSET
1,1
COMMENTS
Conjecture: The sequence is finite, with 3121 being the last term (see A293142).
Written in base 5 (A007091), the terms are 12, 21, 23, 32, 34, 43, 1132, 1321, 1424, 2113, 2414, 3211, 4142, 4241, 13234, 14444, 23413, 32341, 34132, 41323, 41444, 44144, 44414, 44441. - Antti Karttunen, Nov 26 2017
a(25), if it exists, must be larger than prime(10^6) = 15485863, an 11-digit quinary number. - Michael De Vlieger, Nov 26 2017
EXAMPLE
1069 written in base 5 is 13234. The base-5 numbers 13234, 32341, 23413, 34132, 41323 written in base 10 are 1069, 2221, 1733, 2417, 2713, respectively and all those numbers are prime, so 1069, 1733, 2221, 2417 and 2713 are terms of the sequence.
MATHEMATICA
Select[Array[Map[If[Union@ # == {1}, 0, FromDigits[#, 5]] &, NestList[RotateLeft, #, Length@ # - 1]] &@ IntegerDigits[Prime@ #, 5] &, 10^5, 4], AllTrue[#, PrimeQ] &][[All, 1]] (* Michael De Vlieger, Nov 26 2017 *)
PROG
(PARI) rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v
decimal(v, base) = my(w=[]); for(k=0, #v-1, w=concat(w, v[#v-k]*base^k)); sum(i=1, #w, w[i])
is_circularprime(p, base) = my(db=digits(p, base), r=rot(db), i=0); if(vecmin(db)==0, return(0), while(1, dec=decimal(r, base); if(!ispseudoprime(dec), return(0)); r=rot(r); if(r==db, return(1))))
forprime(p=1, , if(vecmin(digits(p, 5))!=vecmax(digits(p, 5)), if(is_circularprime(p, 5), print1(p, ", "))))
CROSSREFS
Cf. base-b nonrepunit circular primes: A293657 (b=4), A293659 (b=6), A293660 (b=7), A293661 (b=8), A293662 (b=9), A293663 (b=10).
Sequence in context: A038961 A127903 A271000 * A168079 A296928 A358743
KEYWORD
nonn,base,more
AUTHOR
Felix Fröhlich, Oct 28 2017
STATUS
approved